
Advanced C++

Lorenzo Natale (lorenzo.natale@iit.it)
September/October 2007, Italian Institute of Technology, Morego Genova

Advanced C++

Lorenzo Natale (lorenzo.natale@iit.it)
September/October 2007, Italian Institute of Technology, Morego Genova

what is advanced?

Schedule:

Tue 18/9 9:30-12:30
Thu 20/9 9:30-12:30
Tue 2/10 9:30-12:30
Thu 4/10 9:30-12:30

Program
• Introduction to Object Oriented Programming
• Classes

– constructors, destructors
– members, static and const members
– operators, overload

• Inheritance, polymorphism
• Templates
• Overview of the Standard Template Library
• Maybe some advanced topics

Writing code is easy!

But…

• Does anybody write GOOD code?

• Programming languages are like spoken
languages, it is not so difficult to make
sentences, but it is very difficult to write
well

• Even worse, the wrong assumption when
writing code is that what is important is to
make it work…

What is GOOD code?

• The whole point is to… avoid bugs
• Simplicity
• Readability
• Modularity/Separation � code reuse, be “smart lazy”
• Layering � e.g. GUIs
• Efficiency
• Elegance � code can be beautiful to look at
• Manage complexity, reduce bugs, improve flexibility,

ease maintainability and facilitate team work

and finally…

GOOD code is a matter of taste…

Programming Paradigms

• Procedural programming:

“Decide which procedures you want; use the best
algorithms you can find”

-focus on processing-algorithms
-usually supported by languages by providing facilities for creating
funcitons, passing arguments to them and return results
-Example: double sqrt(double v)

double sqrt(double v);

#include “sqrt.h”

int main()
{

double root2=sqrt(2);
}

#include “sqrt.h”

double sqrt(double v)
{

… //code to compute sqrt…
}

main.cpp sqrt.cpp

sqrt.h

Programming Paradigms

• Modular programming, emphasis in the design of programs
has shifted from design of procedures toward organization
of data:

“Decide which modules you want; partition the
program so that data is hidden within modules”

-Example: implementation of a Stack

Example: stack

Example: better stack

Programming Paradigms

• User-defined types (or abstract data
type):

“Decide which types you want; provide a full set of
operations for each type”

-Example: implementation of the Stack class

C++ stack

More on OOP, concepts:

encapsulation

polymorphism

inheritance

Encapsulation

• Put together data and code (methods) required
to manipulate it � objects

• Objects are “black boxes”; users have access
to an object only through a subset of methods
and variables it declares as public (interface)

push(char c)

char pop()

const int max_size;
int v[max_size]

Polymorphism

• Extends the concept of interface
• Interfaces can be made separated entities
• Through polymorphism an interface provides

access to different implementations

Stack
of

integers
Stack

Interface

push();
pop();

Stack
of

doubles

User
Code

int main()
{
…
}

Polymorphism can be powerful

move_forward(double m)

move_backward(double m)

stop()

wheeled
robot

legged
robot

flying
robot

run()

crawl()

ro
bo

t g
en

er
ic

in
te

rf
ac

e
le

ss
 g

en
er

ic
in

te
rf

ac
e

Inheritance

• Through inheritance an object acquires properties
of another object

• Allows to organize information in a hierarchical
way, by creating a hierarchy of classes and
subclasses (parents and children)

• Subclasses need only define properties that make
them unique within their “group”

• Other properties are acquired (derived) through
inheritance

color, center
where();
move();
draw()=0;
rotate()=0;

Shape

Circle

radius
draw() {..}
rotate() {}

Rectangle

height;
width;
draw() {..}
rotate() {..}

“Decide which classes you want; provide a full set of
operations for class; make commonality explicit by
using inheritance”

C++ supports Object Oriented
Programming

it makes convenient, meaning easy,
reasonably safe and efficient to use this
style

it takes effort or skill to write such
programs (e.g. OOP in C)

Also C++ provides compile-time/run-time checks for type checking,
ambiguity detection and additional OO libraries

distinction between,
“supporting” and
“enabling” a
particular style

support

enable

C++, Historical Notes

• Extension of C, originally developed by Bjarne
Stroustrup in 1979

• Borrows notion of class from Simula67 (Dahl
1970) and operators from Algol68 (Woodward
1974)

• Initially called C, with classes
• Became C++ in 1983
• First revision in 1985
• Started Standardization by ANSI/ISO, in 1990
• First draft in 1995, ratified in 1998
• Minor revisions in 2003

Classes

• A class is a user-defined type
• It groups data and functions to manipulate it
• It is similar to a struct, actually in C++ a struct is a

kind of class
• Example: define the concept of Date

struct Date {
int day, month, year;
void init_date(int d, int m, int y); //initialize
void add_year(int n;); //add n years…
void add_month(int n);
void add_day(int n);

};

struct Date {
int day, month, year;
void init(int d, int m, int y); //initialize
void add_year(int n;); //add n years…
void add_month(int n);
void add_day(int n);

};

int main()
{

Date today;
today.init(18,9,2007)

;

Date tomorrow;
tomorrow=today;
tomorrow.add_day(1

);

tomorrow.month=10
0;
}

void Date::init(int, dd, int mm, int yy)
{

day=dd;
month=mm;
year=yy;

}

violation! can we prevent this?

Access Control

• The previous declaration of Date does not protect
the representation of Date (e.g. d, g, and y) from
external access

• Use class

class Date {
int d, m, y;

public:
void init_date(int dd, int mm, int yy); //initialize
void add_year(int n;); //add n years…
void add_month(int n);
void add_day(int n);

};

private part of Date

public part of Date

int main()
{

Date today;
today.init(18,9,2007);

Date tomorrow;
tomorrow=today;
tomorrow.add_day(1);

tomorrow.m=100; // error cannot access private member
}

• Access to private members (be it data or functions) is allowed
only from members of the class

• Safe, access to data is forced through the public interface
(prevent writing 100 in month)

• Other details are hidden to the external world and can be
changed

class class_name {
data and private functions
public:
data and public functions
private:
data and public functions
...
...
};

• More in general:

• members can be public, private and protected, this affects
inheritance rules…

Constructors

• The use of the function init is tedious and error-prone, a programmer
could forget to initialize an object with undefined results

• We can “force” initialization by declaring a function with the explicit
purpose of initializing the object (constructor)

• A constructor has the same name of the class and does not return any
value (not even void)

class Date {
public:

Date(int d, int m, int y); // constructor
};

Date::Date(int, dd, int mm, int yy)
{

day=dd;
month=mm;
year=yy;

}

• A constructor is called whenever a object of a class is created
• If the constructor requires arguments, these arguments must

be supplied

int main()
{

Date today=Date(18,9,2007);
Date xmas(25,12,2007);
Date tomorrow;

} error! must provide parameters

abbreviated form

Overload
• It is useful (and typical) to provide several ways of initializing a

class object

class Date {
public:

Date(int d, int m, int y); // constructor
Date(int d, int m); // day, month, today’s year
Date(int d); // today’s month and year
Date(); // default date, today
Date(const char *date); // from a string representation

};
int main()
{

Date today=Date(18);
Date xmas(“Dec 25, 2007”);
Date now;

}

the compiler decides
which constructor to call (from
the parameters)

Overload: the same principle
applied to functions

struct complex {
double Re;
double Im;

};

// compute the square of a scalar (double)
double square(double a) {

return a*a;
}

// compute the square of a complex
complex square(complex a) {

complex tmp;
tmp.Re = a.Re*a.Re – a.Im*a.Im;
tmp.Im = 2*a.Re*a.Im;
return tmp;

}

..but
• Overloaded functions must have different parameters
• It is not possible to have functions with same parameters but

different return type

double myFunction();

int myFunction();

error!

Constructors with one parameter

class Number {
int a;

public:
Number (int j)
{a=j;}

int geta()
{return a;}

};

int main()
{

Number n=10; // eq: n=Number(10);
}

If an object has a constructor with a single parameter

Default parameters
• Constructor overload might lead to proliferations of functions
• The use of default parameters can alleviate this problem

class Date {
public:

Date(int d=0, int m=0, int y=0); // constructor
…

};

Date::Date(int d, int m, int y)
{

if (d!=0)
day=d;

else
day=…; //get today’s day and write it

….
}

• Of course in this case we are lucky
because 0,0,0 are not valid numbers for
day, month and year, so we do not clash
with possible values

Consider this other example:

class Rectangle
{

double a,b;
public:

Rectangle(double i=0, double j=0); // default’s parameters
double area() {

return a*b;
}

};

Rectangle:: Rectangle (int i, int j) {
a = i;
b = j;

}

Rectangle a; // equivalent to Rectangle a(0,0)
Rectangle b(2); // equivalent to Rectangle b(2,0);
Rectangle c(2,2);
double ab= b.area(); // ab is 0
double ac = c.area(); // ac is 4

• Limitations:
– Default parameters must be at the end of the list
– There must be no ambiguity with other overloaded versions of the

same function (e.g. Rectangle::Rectangle())

• Default paramters go in the declaration
• Obviously not limited to constructors, e.g.:

Notes on default parameters

void printError(const char *string = 0);

void printError(const char *string)
{

if (string == 0)
printf(“Error\n”);

else
printf(“Error: %s\n”, string);

}

Array of objects

• It is possible to create arrays of objects
• Useful to manage sets of variables of the same type

Example:

class Number {
int i;

public:
void set(int j) {i=j;}
int get() {return i;}

};

int main()
{

Number ns[9];

for (int k=0; k<9;k++)
{

ns[k].set(10);
}

}

What if the constructor requires a
parameter?

class Number {
int i;

public:
Number(int k)
{

i=k;
}
void set(int j) {i=j;}
int get() {return i;}

};

int main()
{

Number ns[9];

for (int k=0; k<9;k++)
{

ns[k].set(10);
}

}

error, constructor requires parameter

int main()
{

Number ns[9]={1,2,3, …};

for (int k=0; k<9;k++)
{

ns[k].set(10);
}

}

Pointers to Objects

• As for other variables, it is possible to define pointers to
objects

int main()
{

Number a(10);
Number *p;

p=&a;

p->set(11); //now a contains 11
printf(“%d”, p->get()); //prints 11

}

• Arithmetic of pointers works for pointers
to objects

int main()
{

Number ns[9]={1,2,3, …};
Number *p;
p=ns; //point to beginning of array

for (int k=0; k<9;k++)
{

p->set(10);
p++;

}
}

• Members are like any other variables, so we can
get e pointer to them

int main()
{

Number ns;
int *p=&ns.i; //i must be public

*p=0; //writes 0 in ns.i
}

• Must have good reasons to do this, violates data
hiding/encapsulation principle

Destructor
• A class’s destructor is a function that is executed when the

object is destroyed (it goes out of scope)
• It as the same name as the class prefixes by ~
• It does not return any value (not even void)

class Employee {
const int SIZE=80;
char *name; // private
double salary; // private

public:
Employee ();

~ Employee ();
void setName(char *n);
void setSalary(double s)

{salary=s};
}

Employee :: Employee(){
name = new char [SIZE];

}
Employee ::~ Employee() {

delete [] name;
}

void Employee::setName(const char *n)
{

strncpy(name,n, SIZE)
name[SIZE-1]=‘\0’;

}int main()
{

Employee foo;

{
Employee bar;

}

Employee baz;
f();

}

int f()
{

Employee bop;
}

{} here define a new scope

• To recap:
– destructors and constructors are invoked when objects

instantiated and destroyed (the object go out of scope or a
delete is called)

– destructors follow order inverse w.r.t. the order of
constructors

• Important: it is not possible to know the order of
construction of global objects declared in different
files

Static
• In C a static variable is initialized only the first time

it is used

void loop()
{

static int times=0;
times++;
printf(“Called %d times\n”, times);

}

int main()
{

for(int k=0; k<100;k++)
{

loop();
}

}

• In C++ this is still true; in addition members of a class can be
static, this applies to both data and functions

• When a variable is static within a class, there exists only once
copy shared among all objects of the same class

class Shared {
static int a;

public:
void set(int i) {a=i};

}

int Shared::a=0; //definition of “a” (only once)

int main()
{

Shared X, Y;
X.set(1);
Y.set(2)

}

Shared::a exists before X,Y

X.a is 1

Ya is 2, but also X.a is 2

int Shared::a=0; //definition of “a” (only once)

int main()
{

Shared::a=99;
Shared::init(99);
Shared X, Y;
X.set(1);
Y.set(2)

}

• Static function can only access static variables
• Useful to initialize static variables

ok, init is public, notice that
at this point there are no
instances of Shared, but we
can have access to a
through Shared::init()

error, a is private

class Shared {
static int a;

public:
static void init(int k){ a=j;}

}

to tell the compiler we want to use the init()
defined in Shared we used Shared::init()

• Why static members?
• They are useful to avoid global variables
• Counting the number of instances of a

given class
• Sharing resources that are “unique”

Example 1: counter
class Counter {
public:

static int count;
Counter() {count++};
~Counter() {count--};
void show()
{

printf(“Counter%d”, count);
}

};
int Counter::count=0;

int main()
{

Counter c1;
c1.show();
f();
Counter c2
c2.show();

}

void f()
{

Counter tmp;
tmp.show();

}

Example 2: RobotShared

This
• When a member function is executed, a pointer to the “calling” object is

automatically passed to it
• This pointer is called “this”
• In fact “this” is the mechanism used by C++ to implement member

functions; member functions are like normal functions, that receive a
“hidden” parameter, a pointer to the calling object

class Complex
{

double re;
double im;

public:
Complex (double r, double i)
{

re=r;
im=I;

}
double getRe()
{ return re; }

};

class Complex
{

double re;
double im;

public:
Complex (double r, double i)
{

this->re=r;
this->im=I;

}
double getRe()
{ return this->re; }

};

Operators

• Operators in C++ are like other functions and can be overloaded
• This is powerful, it allows to have user-defined types behave like built-in

ones

main()
{

Complex C;
Complex A(0,4);
Complex B(-1);
C = A - B; // ??

}

class Complex {
double re;
double im;

public:
Complex (double r = 0.0, double i = 0.0) ;

};

Operators as member functions
• General form:

return_type class_name::operator#(parameters)
{…}

• Example “operator -”
class Complex {

double re;
double im;

public:
Complex (double r = 0.0, double i = 0.0) ;
Complex operator- (Complex b);

};

“-” is equivalent to a function called operator -

Complex Complex::operator-(Complex b)
{

Complex temp;
temp.re = re - b.re; // sum real part
temp.im = im - b.im; // sum img part
return temp;

}

return object, useful to assign the object C=A-B

• Another example, operator ‘++’

Complex Complex::operator++ ()
{

re++;
im++;
return *this; // return itself

}

int main()
{

Complex A(0,0);
++A;
Complex C;
C=++A;

}

• What about A++ ?

Complex Complex::operator++ (int x)
{

Complex tmp=*this; //save for later
re++;
im++;
return tmp; // return prev copy

}

dummy int, to be ignored (always 0)

Complex Complex::operator+= (Complex b)
{

re=re+b.re
im=im+b.im;
return *this;

}

• More operators, abbreviated form:

• Copy assignment operator:

Complex Complex::operator= (Complex b)
{

re=b.re
im=b.im;
return *this;

}

• An assignment operator like this is generated for free by the
compiler (bitwise copy), but in some cases this is not
enough…

allows concatenation A=B=C

• It is better to minimize the number of functions that directly manipulate
the representation of an object

• Operators can also be define outside of a class

Nonmember Operators

Complex operator+ (Complex a, Complex b)
{

Complex r=a;
return r+= b

}

access re and im through += (defined inside Complex)

global function

drawback: less efficient in general, cannot access to members
(here Complex::re and Complex::im)

Mixed-mode arithmetic

Complex d=2+b ?

2 here is an integer, cannot overload operator +

Complex Complex::operator+= (double a)
{

re+=a;
return *this;

}

• Nonmember operators are more flexible

Complex operator+ (double a, Complex b)
{

Complex tmp=b;
return b+=a;

}

+= member operator

+ nonmember operator

Overload of operators: limitations

• cannot change the order of precedence of
operators

• cannot change the number of parameters required
(of course we can ignore some of them)

• cannot have default parameters
• we can overload most of the operators “+”, “-“,

“++”, “—“, “*”, “->”, “>”, “<”, “==“, etc…, but not “.”
“::” “.*” and “?”

• common sense: don’t change the meaning of the
operator (i.e. don’t write operator + so that it does
a subtraction)

Copying, passing objects to functions
class Vector
{

double *buffer;
int length;

public:
Vector(int l=0, double v=0.0);
~Vector();
double get(int k);
int getLength();

}

Vector::Vector(int l=0, double v=0.0):
buffer(0),
length(0)
{

if (l>0) {
length=l;
buffer=new double [l];
for(int k=0;k<l;k++)

buffer[k]=v;
}

}

Vector::~Vector()
{

if (buffer!=0)
delete [] buffer;

}

void printVector(Vector p)
{

for(int k=0; k<p.getLength(); k++)
printf(“%lf\n”, p.get(k));

}

int main()
{

vector v(3, 1.0)
printVector(v);

}

v.buffer

v.length3

3

1.0
1.0
1.0

p.buffer

p.length

v’s dynamic
memorydisaster!

• Solution 1, use pointers

void printVector(Vector *p)
{

for(int k=0; k<p->getLength(); k++)
printf(“%lf\n”, p->get(k));

}

int main()
{

vector v(3, 1.0)
printVector(&v);

}

only the pointer is duplicated, ~Vector()
is not invoked at the end of the function

Drawbacks:
-printVector can now modify v through p
-tedious, we have to use & and ->
-difficult to overload operators for pointers

• Solution 2, C++ allows to use reference to pass objects

void printVector(Vector &p)
{

for(int k=0; k<p.getLength(); k++)
printf(“%lf\n”, p.get(k));

}

int main()
{

vector v(3, 1.0)
printVector(v);

}

we say v is passed by reference (as opposed to
by value)

• To prevent a function from modifying the object it is possible
to use the const modifier

void printVector(const Vector &p)
{ ... }

• Solution 3, explicit copy constructor
We have this problem because the compiler does not know how to copy an object
defined by the user; in lack of better information the compiler performs a bitwise copy.
We can instruct the compiler so that it knows how to do this operation properly. We do
this by writing a copy constructor, a constructor which takes as a parameter a reference
of the class itself:

Vector::Vector(const Vector &v):
buffer=0,
length=0
{

length=v.length;
if (length!=0)
{

buffer=new double [length];
for(int k=0;k<length;k++)

buffer[k]=v.buffer[k];
}

}

v.buffer

v.length3

3

1.0
1.0
1.0

1.0
1.0
1.0

p.buffer

p.length

v’s dynamic memory

p’s dynamic memory

• A similar problem occurs when we copy objects, in
assignment operations:

int main()
{

Vector v1(3,1.1);
Vector v2(2,0.0);

v2=v1;
}

v1.buffer

v1.length3

3

1.0
1.0
1.0

v2.buffer

v2.length

v1’s storage

0.0
0.0

v2’s storage

invoked v1 and v2’s destructors
v1’s storage is deallocated twice
v2’s storage is lost

situation after copy v2=v1

• Solution, overload copy assignment operator

Vector & Vector::operator=(const Vector &v)
{

if (buffer!=0)
delete [] buffer;

length=v.length;
if (length!=0)
{

buffer=new double [length];
for(int k=0;k<length;k++)

buffer[k]=v.buffer[k];
}

return *this;
}

deallocate first

Final note on object duplication
• Troubles occur when we try to duplicate objects, this happens in two

different cases:
– object initialization
– copy

• These cases look similar but are indeed quite different and have
different solutions

• In the first case we are using an object to create a new one; in fact to
solve this we need to declare a copy constructor

• In the second case, we are filling the content of an existing object with
the content of another one, this is solved by writing a assignment
operator

Vector a;
Vector b;
Vector c=b;

a=b;

Vector addVectors(Vector p1, Vector p2)
{

Vector tmp;

tmp=p1+p2;

return tmp;
}

copy

initialization
initialization

initialization
copy

• This is often less than ideal, because it avoids a considerable
overhead to the code; for this reason it is always preferable to
pass arguments by reference

• The same overhead might occur in case of large objects

class Vector
{

const int length=1000;

double buffer[length];
public:

Vector(double v=0.0);
~Vector();
double get(int k);
int getLength();

}

fine to copy this object, but costly

void printVector(Vector p)
{

double a=v.get(0);
}

void printVector(const Vector &p)
{

double a=v.get(0);
}

much better!

• Is pass-by-reference always less expensive?
• References are typically implemented as pointers
• So for built-in types, it might be more efficient to use pass-by-

value
• What about small objects? They have inexpensive copy

constructors, so we might think it is ok to pass them by value.
However:
– They are somehow treated differently by the compilers
– An object might be small now, but could grow in the future
– In different impl of STL, for example objects have different size

Better way to overload operators

Complex &Complex::operator++ ()
{…}

Complex Complex::operator++ (int x)
{...}

Complex operator+ (const Complex &a, const Complex &b)
{...}

Complex &Complex::operator+= (double a)
{...}

Complex operator+ (double a, const Complex &b)
{...}

etc…

Nonmembers:

Members:

Let’s see how we should write our operators:

General rule:
Pass as const reference, return
references to *this and copies of
temporary objects

Returning references
• In some cases it is useful to return references to objects
• This allows writing functions that directly modify the content of an object

class Complex
{
private:

double re;
double im;

public:
Complex(double r=0, double i=0) {

re=r;
im=i;

}

double &real()
{ return re; }

double &imag()
{ return im; }

};

int main()
{

Complex a;
a.real()=10;
a.imag()=10;

double b=a.real();
}

returning a reference

we get access to a.re and a.im, not
to their copies

ok, copies r.re into a

Returning references: pitfall
• Be careful not to return a reference to a temporary object!

This is not what we want to do (we are not returning ‘re’), and
dangerous (and wrong) !

undefined behavior!

double &Complex::real()
{

double tmp=re;
return tmp;

}

Complex a(1,1);
a.real()=10;

double t=a.real();

we are returning a reference to an object that
is going to be destroyed after the invocation
of Complex::real()

• More realistic example:

Complex &operator+ (const Complex &a, const Complex &b)
{

Complex tmp=a;
tmp +=b;
return tmp;

}

Complex a(1,1);
Complex b(2,2);

Complex c=a+b; // c is now undefined...

wrong!

Complex operator+ (const Complex &a, const Complex &b)

not much we can do to avoid this, but at least it is correct…

The Curse of const
• What happens when we have a const reference?
• The compiler does its best to check that this object is not modified
• How?

void myFunc(const Rational &b)
{

int c=b.n; // this is ok
b.n=10; // error, l-value specifies const object
b.num()=10
int d=b.num();

}

class Rational
{
public:

int n;
int d;

public:
Rational(int nn=0,int nd=0);

int &num()
{ return n; }

int &den()
{ return d; }

};

public, for now

error cannot convert this pointer from const
Rational & to Rational &

• Returning const references guarantees that nobody will be able to
modify these references

• Member functions that do not modify an object, can (and must) be
declared as const; this allows invoking them from const objects

class Rational
{
public:

Rational(int nn=0,int nd=0);

const int &num() const
{ return re; }

const int &den() const
{ return im; }

};

int main()
{

Rational a;
myFunc(a);

a.num()=10;
}

void myFunc(const Rational &n)
{

int num=n.num();
int den=n.den();
….

}

ok, members are now const

to be able to do this, we need to overload num()
and den() with non const members (it is
possible)

Complex &a=const_cast<Complex &>(b);

myFunc(b); //error! b is constant

myFunc(a); //ok a is not const

• All this might seem an overkill, but it is the price to pay to
have the compiler check that the code is consistent

• Also, the compiler can generate more efficient/optimized code
when dealing with const references

• If we are desperate we can force the compiler to do what we
want:

void myFunc(Complex &b)
{

….
}

“cast away const”

ok, it is possible to call non-const members of a

class Complex
{
private:

double re;
double img;
mutable int access_count;

public:
Complex(double r=0, double i=0);
…

}

Mutable and Logical Constness
• In same (rare!) cases it is correct to change the state of a constant

object
• This is sometimes referred to as logical constness, or when you can still

think as the object being constant even if some of its internal variables
have somehow changed

• In this cases it is possible to declare some of the member variables as
“mutable”; mutable variables can be changed in a const object

• Here is an example:

const double &Complex::getReal() const
{

access_count++;
return re;

}

this is ok

Example: a vector class

Inheritance

• Through inheritance an object acquires members of another
object

• Subclasses “extend” their parent by defining members that
make them unique

class derived_class: access base_class
{

//body
};

access can be:
public, private or protected

Public inheritance

• Variables and functions of the parent that
are public or protected remain such

• the subclass can access public and
protected members but not the ones that
are private

Example:
class Building {

int rooms;
int floors;
int area;
…

public:
void setRooms(int n);
int getRooms() const;
void setFloors(int n);
int getFloors() const;
void setArea(int num);
int getArea() const;

}

class House: public Building {
int bedrooms;
int baths;

public:
void setBedrooms(int n);
int getBedrooms() const;

}

class School: public Building {
int classrooms;
int offices;

public:
void setClassrooms(int n);
int getClassrooms() const;

}

int main()
{

House h;
School s;

h.setRooms(10);
h.setFloors(3);
h.setArea(5000);
h.setBedrooms(5);
h.setBaths(3);

printf(“House area: “, h.getArea());

s.setRooms(200);
s.setClassrooms(180);
…

printf(“School area:%d\n “,s.getArea());
}

House School

Building

• More interestingly, inheritance allows to group objects given their
commonalities and treat them accordingly

void printArea(const Building *b)
{

printf(“Area is: %d\n", b->getArea());
}

int main() {
House h;
School s1;
School s2;
Building b1;
…
Building *buildings[4];
printf(“House area: “, h.getArea());

builings[0]=&h;
builings[1]=&s1;
builings[2]=&s2;
buildings[3]=&b1;

for(int k=0;k<3;k++) {
buildings[k]->setArea(10);
buildings[k]->setFloors(5);

//buildings[k]->setBaths(); //this would be an error
printBase(buildings[k]);

}
}

• House(s) and School(s) are subtypes of Building and can be used
whenever a Building is acceptable (the opposite is not true)

Private members and inheritance

• Private members are hidden in derived classes

class Base
{

private:
int a;

public:
int b;

}
class Derived: public Base
{

public:
void foo(){ a=0;}
void bar(){ b=0;}

}

error, a is hidden in Derived

int main()
{

Derived d;
d.a;
d.b=10;

}

error, a is private

ok, b is public

Protected members and inheritance

• Protected members are hidden from outside, but can be
accessed in derived classes

class Base {
protected:

int a;
};

class Derived1: public Base {
public:

void foo(){ a=0;}
};

class Derived2: public Derived1 {
public:

void bar(){ a=0;}
};

ok, a is protected in Base

int main()
{

Derived1 d1;
Derived2 d2;

d1.a;
d2.a;

}

error, a is protected

Private inheritance
• All variables and functions of the parent are

inherited as private

class Base {
public:

int a;
};

class Derived1: private Base {
public:

void foo(){ a=0;}
};

class Derived2: private Derived1 {
public:

void bar(){ a=0;}
};

ok, a is private in Derived1

int main()
{

Derived1 d1;
Derived2 d2;

d1.a;
d2.a;

}

error, a is private

error!

Protected inheritance

• All public (and protected) members of the parent
become protected

class Base {
public:

int a;
};

class Derived1: protected Base {
public:

void foo(){ a=0;}
};

class Derived2: protected Derived1 {
public:

void bar(){ a=0;}
};

ok, a is protected

int main()
{

Derived1 d1;
Derived2 d2;

d1.a;
d2.a;

}

error, a is protected

Multiple Inheritance

• In C++ a class can inherit from more than
one class

class Derived: public Base1, Base2, Base3 {
//class body

}

Base1 Base2 Base3

Derived

Constructors, destructors and inheritance

• Some derived classes need constructors, if a base class has
constructors then a constructor must be called

• Default constructors are invoked implicitly
• However, if all constructors for a base require arguments, then a

constructor for that base must be explicitly called:

class Building {
public:

Building(int fl; int a);
}

class House: public Building {
int bedrooms;
int baths;

public:
House(int fl, int a, brs, int bths);
House(int fl, int a);

};

House::House(int fl, int a, int brs, int bhts)
:Building(fl, a)

{
bedrooms=brs;
baths=bths;

}

House::House(int fl, int a)
:Building(fl, a),
bedrooms(0),
baths(0)

{}

member initialization

• What is the order of constructors and destructors in derived classes?
• First is invoked the constructor of the base class and then the

constructor of the derived class is called
• Destructors are invoked in reverse order

Base

Derived1

Derived2

Base::Base() � Derived1::Derived1() � Derived2::Derived2()

Derived2::~Derived2() � Derived1::~Derived1() � Base::~Base()

• In case of multiple inheritance, constructors follow the order of
declaration (from left to right)

Note on inheritance and copy
• The default copy-constructor of a class also calls default copy-constructors of

parents
• The same is true for the copy assignment operator

House h1;
House h2=h1; //calls defult copy-constructor

copies members of House (bedrooms, baths) and
members of Building (rooms, floors, area…)

• But if you write your own copy constructor you have to call the copy
constructor of the parent:

House(const House &c) {
bedrooms=c.bedrooms;
baths=c.baths;

}

House(const House &c): Building(c) {
bedrooms=c.bedrooms;
baths=c.baths;

}

wrong! Building::rooms, Building::floors,
Building::area are not copied ok, calls Building copy constructor

Overview of useful
C++ features

#include <iostream>
int main()
{

int d=10;
std::cout << “Hello, d is = \n” << d;

}

iostream class

difference with C, no .h

to use symbols defined in these
header files you must specify the
namespace

Warning: old C++ header files are similar to the C-style header files, but they
do not have namespace. They are still around for compatibility reasons, but
be careful not to mix old and new header files (e.g. never include both
<iostream> and <iostream.h> at the same time)

• If we use the keyword using namespace std there is
no need to add std::

#include <iostream>
using namespace std;
int main()
{

int d=10;
cout << “Hello, d is = \n” << d;

//use of formats:
cout << “a number in decimal” << dec << 15 << endl;
cout << “in octal” << oct << 15 << endl;
cout << “in hex” << hex << 15 <<endl;

}

ok in cpp/cc files, dangerous in header files!

• Reading input:

#include <iostream>
using namespace std;
int main()
{

int d;
cout << “Please enter a decimal number\n”;
cin >> d;

}

Strings
• C style strings (char [] or char *) is tedious
• Size is predefined (unless we use dynamic memory), difficult to

compare, concatenate…
• C++ provides a string class to simplify these tasks

#include <stdio.h>
#include <string>
using namespace std;
int main()
{

string s1, s2; //empty strings
string s3=“Hello”; //initialized string
s2 = “World”; //assignment
s1=s3+s2;
s1+=“!!”
cout << s1; //print “Hello World!!”
printf(“%s”,s1.c_str()); //print “Hello World!!”

}
if you like printf, you can get a c-style string out of a string

Reading/Writing files

• <fstream> defines ifstream/ofstream which behave like
cin/cout but on files

#include <string>
#include <fstream>
using namespace std;
int main()
{

ifstream in (“input.txt”);
ofstream out (“oputput.txt”);

string s;
while(getline(in, s))

ofstream << s << “\n”;
}

read a line from input file and put it in a string
(discard new lines “\n”), return false when reaches
EOF

writes s into output file

Virtual functions
and

Polymorphism

A problem:
class Building {

int rooms;
int floors;
int area;
…

public:
…
void print() {

printf(“Calling Building::print\n”);
}

};

class House: public Building {
int bedrooms;
int baths;

public:
..
void print() {
printf(“Calling House::print\n”);

}
};

House h;
Building *p=&h;

p->print();

upcast: loses type information about the object

calls Building::print() and not House::print()

class Employee {
public:

enum Empl_type {M,E};
Empl_type type;

Employee():type(E) {}

string name;
Date hiring_date;
int department;

void print() const {
cout << name << department << endl;
}

};

class Manager: public Employee {
public:

Manager()
{type = M;}

Employee *group; //people managed
int level;

void print() const {
cout << level;
// print all people managed
}

};

void print_employee(const Employee *e)
{

switch (e->type) {
case Employee::E:

e->print();
break;

case Employee::M:
e->print();
Manager *p=static_cast<Manager *>(e);
p->print();
…
break;

}
}

also called “type field”

print_employee must know of
all possible kind of
employee(s), error prone,
maintenance problem,
changed/additions to the type
of Employees are propagated
to the code

Virtual functions

• Virtual functions overcome the “type-
field” problem

• They allow the programmer to declare
functions in a base class that can be
redefine in each derived class

• The compiler will guarantee the correct
correspondence between objects and
functions applied to them

class Employee {
public:

string name;
Date hiring_date;
int department;

Employee();

virtual void print() const {
cout << name << department;

}
};

print() act as an interface to print functions defined in this class and in
derived classes, the compiler ensures that the right print() for the given
object in invoked in each case

class Manager: public Employee {
public:

Manager()
Employee *group; //people managed
int level;

void print() const {
Employee::print();
cout << level;

}
};

Manager overrides the base class version of print()

Note: the use of the scope resolution operator :: as in Employee::print()
prevents the use of the virtual mechanism (avoid infinite recursion)

const int N=4;
Employee *empls[N];

Manager m1;
Manager m2;
Employee e1;

empls[0]=&e1;
empls[1]=&m1;
empls[2]=&m2;
…

for(int k=0;k<N;k++)
{

empls[0]->print();
}

calls the right print() for each given object

Abstract classes
• In some cases base classes represent abstract concepts, for

which objects cannot exist

class Shape {
public:

virtual void rotate(int) { printf(“Error cannot rotate a Shape\n”) }
virtual void draw() {printf(“Error cannot draw a Shape\n”)}

}

Shape s;
s.rotate(10);
s.draw();

legal but useless

class Shape {
public:

virtual void rotate(int) = 0;
virtual void draw() = 0;
virtual bool isClosed() = 0;

}
pure virtual functions

Shape s;

error! cannot instantiate abstract class

An abstract class can be used as an interface and as a base for other classes

class Point {…};

class Circle: public Shape {
Point center;
int radius;

public:
void rotate(int c) {}
void draw() {..};
bool isClosed() {return true;}

};

Circle is said to implement Shape
is Circle does not implement any of
the methods of Shape, it remains
an abstract class (and cannot be
instantiated)

Destructors
• Shape provides access to methods of Circle
• Problems might occur if we try to destroy an object through a pointer to

one of its interface

Shape *sh=new Circle;

sh->draw();
sh->rotate();

delete sh;

{

Circle circle;
Shape &sh=circle;

sh.draw();
sh.rotate();
}

fine, sh is just a reference, no destructor is called
circle destructor is called when required

troubles! not really
calling Circle::~Circle()

• The solution to this problem is simple: declare the
destructor as virtual

Virtual Destructors

class Shape {
public:

virtual void rotate(int) = 0;
virtual void draw() = 0;
virtual bool isClosed() = 0;

virtual ~Shape(){}
};

Shape *sh=new Circle;

sh->draw();
sh->rotate();

delete sh;

now calling Circle::~Circle, thourgh ~Shapemust provide implementation

Why interfaces?

• Interfaces allow us to reduce dependencies between user
code (i.e. the code that uses a given class) and the
implementation of a specific class

• Example: yarp device drivers

h=vaopen(“/dev/tty1”);
vasetBaudRate(h,57600);
vasetDataBits(h,8);
vasetParity(h,‘N’);
vasetStopBits(h,1);
…
int newpos=100;
vamove_to(h,newpos);
…
vaclose(h);

User Code

h=vbopen(“/dev/usb”);
…
double newpos=100;
vbgoto(h,newpos);
…
vbclose(h);

A)

B)

VABoard API

R
S

23
2

VBBoard U
S

B

User Code

API

VABoard API

V
A

-W
ra

pp
er

Reusable
User Code

R
S

23
2

U
S

B

VBBoard API

V
B

-W
ra

pp
er

D
ev

ic
eD

riv
er

In
te

rf
ac

e
P

os
iti

on
C

on
tr

ol
In

te
rf

ac
e

virtual bool open(const char *filename) = 0;
virtual bool close() = 0;

IBoard

virtual bool open(const char *filename) = 0;
virtual bool close() = 0;

IBoard IPosition

virtual void positionMove(int j, double np)=0;
virtual void positionMove(double *np)=0;
virtual int getAxis()=0;
…

virtual bool open(const char *filename) = 0;
virtual bool close() = 0;

IBoard IPosition

virtual void positionMove(int j, double np)=0;
virtual void positionMove(double *np)=0;
virtual int getAxis()=0;
…

IVelocity

virtual void velocityMove(int j, double *nv)=0;
virtual void velocityMove(double *nv)=0;
virtual void int getAxis()=0;
…

virtual bool open(const char *filename) = 0;
virtual bool close() = 0;

IBoard IPosition

virtual void positionMove(int j, double np)=0;
virtual void positionMove(double *np)=0;
virtual int getAxis()=0;
…

IVelocity

virtual void velocityMove(int j, double *nv)=0;
virtual void velocityMove(double *nv)=0;
virtual void int getAxis()=0;
…

VABoard

void positionMove(double *np)
{

vamove_to(h, np);
}
void velocityMove(double *nv)
{

vamove_at(h, nv);
}
void positionMove(int j, double np) {…}
int getAxis() { … }
…
bool open(const char *file)
{

//parse file, extract parameters, initialize device
}

bool close(){…}

virtual bool open(const char *filename) = 0;
virtual bool close() = 0;

IBoard IPosition

virtual void positionMove(int j, double np)=0;
virtual void positionMove(double *np)=0;
virtual int getAxis()=0;
…

IVelocity

virtual void velocityMove(int j, double *nv)=0;
virtual void velocityMove(double *nv)=0;
virtual void int getAxis()=0;
…

VBBoard

void positionMove(double *np)
{

vbgoto(h, np);
}

void positionMove(int j, double np) {…}
int getAxis() { … }
…
bool open(const char *file)
{

//parse file, extract parameters, initialize device
}

bool close(){…}

int main()
{

VABoard robot;
robot.open(“vaboard.conf”);

//begin generic code
moveRobot(&robot);

robot.close();
}

void moveARobot(IPosition *ipos)
{

int nj=ipos->getAxis();
for(int k=0;k<nj)

ipos->positionMove(0,10);
}

int main()
{

VBBoard robot;
robot.open(“vbboard.conf”);

//begin generic code
moveRobot(&robot);

robot.close();
}

int main()
{

VABoard robot;

robot.open(“vaboard.conf”);

//begin generic code
moveRobot(&robot);

robot.close();
}

int main()
{

VBBoard robot;

robot.open(“vbboard.conf”);

//begin generic code
moveRobot(&robot);

robot.close();
}

void moveARobot(IPosition *ipos)
{

int nj=ipos->getAxis();
for(int k=0;k<nj)

ipos->positionMove(0,10);
}

still implementation details…what if
we need to create objects in
different parts of our code?

Factory
• There is not much we can do, but at least we can

minimize the number of places in which object creation
takes place

• Delegate object creation to a class (usually called a
factory)

class BoardMaker
{

static IBoard *create(const string type)
{

if (type==“VABoard”) return new VABoard;
if (type==“VBBoard”) return new VBBoard;

}
};

int main()
{

IBoard *va=BoardMaker::create(“VABoard”);
IBoard *vb=BoardMaker::create(“VBBoard”);

va->open(“va.conf”);
vb->open(“vb.conf”);

IPosition *iposa=(IPosition *)(va);
IPosition *iposb=(IPosition *)(vb);

moveRobot(iposa);
moveRobot(iposb);

….
}

we will see soon that the use
of dynamic_cast is more
appropriate, here

• How do we check that we perform the correct cast?
• Or, in other words how can we determine from a

pointer to a base class the type of the original object?
• Example:

IPosition *iposa=(IPosition *)(va);
IPosition *iposb=(IPosition *)(vb);

IVelocity *ivela=(IVelocity *)(va);
IVelocity *ivelb=(IVelocity *)(vb);

ivela->velocityMove(..); //ok
ivelb->velocityMove(..); ????

VABoard *boardA=(VABoard *) iposa; // is this safe?
VBBoard *boardB=(VBBoard *) iposb; // is this safe?
VBBoard *boardC=(VBBoard *) iposa; // ????

fine, va points to a VABoard
which derives from (implements)
IVelocity

troubles, vb points to a VBBoard
which does not derive from
IVelocity

Downcasting
• Casting a pointer or a reference to a base class (or up

an inheritance hierarchy) is called upcasting.
Upcasting is safe, because the classes converge to a
more general class

• Downcasting is more difficult, there are in general
multiple derived classes from a base class

• C++ provides a special explicit cast called
dynamic_cast which is a type-safe downcast operation

• The return value of dynamic_cast is a valid pointer
only if the cast is successful, otherwise the pointer is
zero

IBoard *va=BoardMaker::create(“VABoard”);
IBoard *vb=BoardMaker::create(“VBBoard”);

IPosition *iposa=dynamic_cast<IPosition *>(va);
IPosition *iposb=dynamic_cast<IPosition *>(vb);

IVelocity *ivela=dynamic_cast<IVelocity *>(va);
IVelocity *ivelb=dynamic_cast<IVelocity *>(vb);

if (ivela)
ivela->velocityMove(..);

if (ivelb)
ivelb->velocityMove(..);

VABoard *boardA=dynamic_cast<VABoard *>(iposa);
VBBoard *boardB=dynamic_cast<VBBoard *>(iposb);
VBBoard *boardC=dynamic_cast<VBBoard *>(iposa);

• Mechanisms like dynamic_cast uses what is called run-time type
information (RTTI)

• RTTI allows to discover type information that has been lost by
upcasting

• Another mechanism to detect the type of an object is typeid
• Consider this example:

class Shape {
public:

virtual ~Shape(){}
};

class Circle: public Shape{};
class Square: public Shape{};

#include <typeinfo>
using namespace std;
…
Shape *c=new Circle;
Shape *sq=new Square;

if((typeid(*c)==typeid(Circle))
printf(“c points to a Circle”);

if(typeid(*sq)==typeid(Square))
printf(“sq points to a Square”);

cout << “sq points to”;
cout << typeid(*sq).name() << endl;

Pointers to functions

• in C it is possible to declare pointers to
functions

• pointers to functions can be stored,
assigned as parameters, returned or
organized in vectors

• Syntax:
int myFunction(char c);

int (*f)(char);

f=myFunction;

(*f)(‘c’);

f is a pointer to a function which received a char
as a parameter and returns an integer

ok, assign myFunction to f (its adddress), this is
fine because prototypes of myFunction and f
match

call myFunction through f

• This is powerful because the function that is actually
called is determined at runtime

int foo (char c){…}
int bar(char d){…}

int (*f)(char);

if (rand()%2==0)
f=foo;

else
f=bar;

(*f)(‘c’); which function is called?

Example, a simple FSM

Another example, “callback”
float cost(float x) {

…
return x*x-0.5;

}

int main() {
. .
float min=minimize(cost);
. .

}

float minimize(float (*g)(float))
{

float x; // pick initial guess for x
while(!done)
{

// update x
// call g(x) to get cost
// check stop criteria

}

return x;
}

Templates

Example:
Bubble sort

1st pass

2nd pass

3rd pass

Bubble sort: code
void bubble(int *items, int count)
{

int a, b;
int t;
for (a=1;a<count;a++)

for(b=count-1;b>=a;b--)
if (items[b-1] > items[b]) {

t=items[b-1];
items[b-1]=items[b];
items[b]=t;

}
}

int main()
{

int elems[6]={10,5,4,3,1,8};
bubble(elems, 6);

for(int k=0;k<6;k++)
{

cout<<elems[k]<< " ";
}

}

print 1 3 5 8 10

• The bubble sort algorithm is generic, it does not need
knowledge about the objects it is manipulating,
provided it can compare and copy them

• What if we need to sort floating point numbers? or
strings?

• Templates offer a good (and efficient) solution to this,
as they allow to reuse source code

• The template keyword tells the compiler that the
function will manipulate one or more unspecified
types. At the time the code is generated those types
must be specified so that the compiler can substitute
them

template<class X> void bubble(X *items, int count)
{

int a, b;
X t;
for (a=1;a<count;a++)

for(b=count-1;b>=a;b--)
if (items[b-1] > items[b]) {

t=items[b-1];
items[b-1]=items[b];
items[b]=t;

}
}

int main()
{

int iv[6]={10,5,4,3,1,8};
bubble(iv, 6);

double db[4]={9.3,1,0.1,4};
bubble(db, 4);

}

assumptions:
can copy and compare T

X is the substitution parameter

can deduce the value of T from the
parameters, in these cases int * and double *

double elems[]={…};
bubble(elems, 6);

bubble<double>(elems, 6);

template<class T> T* create()
{

return new T;
}

int *p=create<int>();

cannot deduce ‘int’ from parameters, must
provide template argument

• Let’s go back to our stack… suppose we want to
create a stack of int(s)

class IntStack {
enum{ssize=100};
int stack[ssize];
int top;

public:
IntStack(): top(0) {}
void push(int e) {

if (top>=ssize)
cout<<“Error stack full” << endl;

else
stack[top++]=e;

}
int pop(){

if (top<=0) {
cout << “Error stack empty” << endl;
return 0;

}
else

return stack[--top];
}

};

• Similar question: we need a stack of double(s) and we
want to reuse as much as possible code written (and
debugged) for IntStack

template<class T>
class Stack {

enum{ssize=100};
T stack[ssize];
int top;

public:
Stack(): top(0) {}
void push(const T &e) {

// check if stack is full
stack[top++]=e;

}
T pop(){

// check if stack is empty
return stack[--top];

}
};

T is the substitution parameter

int main()
{

Stack<int> is;
Stack<double> ds;
Stack<string> ss;

is.push(10);
ds.push(3.14);
ss.push(“hello”);

cout<<ss.pop();
}

the compiler expands the Stack template for the type in <> and creates
new classes; these are classes like the ones you would get by performing
substitution by hand (expect it is automatic and correct…)

assumption:
can copy T

template<class T>
class Stack {

enum{ssize=100};
T stack[ssize];
int top;

public:
Stack(): top(0) {}
void push(const T &e);
T pop();

};

• Non-inline function definitions

template<class T>
void Stack<T>::push(const T&e) {

// push code…
}

template<class T>
T Stack<T>::pop() {

// pop code…
}

although separated, usually go in
header files

Source code organization
#include <iostream>

template<class T> void out(const T&t) {std::cout<<t;}

make it a single file out.h and #include it
when needed

user1.cpp:
#include “out.h”
// use out

user2.cpp:
#include “out.h”
// use out

out.h:
template<class T> void out(const T&t);

out.cpp:
#include <iostream>
#include “out.h”

export template<class T>
void out(const T&t) {std::cout<<t;}

user1.cpp:
#include “out.h”
// use out

user2.cpp:
#include “out.h”
// use out

Constants in templates
• Template arguments can be built-in types
• The values of these arguments become compile-time constant

for a given template
• You can even have default values

template<class T, int ssize=100>
class Stack {

T stack[ssize];
int top;

public:
Stack(): top(0) {}
void push(const T &e);
T pop();

};

int main()
{

Stack<int> is;
Stack<double,10> ds;

}

stack of 100 elements
stack of 10 elements

Template specialization
• It is possible to perform the overload of a template for a particular

value of the parameter

template <class X>
void swapargs(X &a, X &b)
{

X temp;
temp=a;
a=b;
b=temp;
cout<<“Generic\n”;

}

int main() {
int a=10;
int b=20;

double c=3.14;
double d=0.0;
swapargs(a,b);
swapargs(c,d);

}

tempate<> void swapargs<int> (int &a, int &b)
{

X temp;
temp=a;
a=b;
b=temp;
cout<<“Specialized for int\n”;

}

uses specialized version

uses generic version

• Specialization can also be applied to template
objects

template<>
class Stack<int> {

int stack[ssize];
int top;

public:
Stack(): top(0) {}
void push(const int &e);
int pop();

};

specifies that this specialization is to be used for
Stack<int>

It is ok to declare several function template with the same name:

template<class T> T sqrt(T);
template<class T> complex<T> sqrt(complex<T>);
double sqrt(double);

Use of Template Arguments to Specify Policy

• The sorting algorithm we implemented was using a sorting
criteria for comparing elements in the array

• Who specifies this criteria?
• One possibility is to hardwire it in the type (by overloading

operator > or <), but in some cases there are different ways of
sorting elements… for example you might want to use a case
sensitive or case insensitive criteria

• Another possibility is to express the sorting criteria in general
terms that can be defined not only for a specific type, but for a
specific use of a specific type

Example: compare two strings

• Suppose we want to compare two strings and we want to specify
the way characters are compared

int compare(const string &str1, const string &str2)
{

for(int i=0; i<str1.length() && i<str2.length(); i++)
if (!str1[i]==str2[i])

return 0;

return 1;
}

return 0 if different, 1 otherwise,
check only elements common to
both strings (simplified version)

here we rely on comparison between char

template<class C>
int compare(const string &str1, const string &str2)
{

for(int i=0; i<str1.length() && i<str2.length(); i++)
if (!C::eq(str1[i],str2[i]))

return 0;

return 1;
};

class Cmp {
public:

static int eq(char a, char b)
{ return a==b; }

};

now we use C::eq() static method inside the
class C

use:
string string1;
string string2;
compare<Cmp>(string1, string2);

the difference is that in this case we are passing the class Cmp which
specifies how we want to compare elements T

CICmp {
public:

static int eq(char a, char b)
{ return tolower(a)==tolower(b); }

};

• Now we can define another class:

case insensitive eq

• Here is how we use different policies:

string string1;
string string2;

compare<Cmp>(string1, string2); //use standard compare

compare<CICmp>(string1, string2); //use case ins. compare

template<class C=Cmp>
int compare(const string &str1, const string &str2)
{

….
};

compare<Cmp>(string1, string2);
compare(string1,string2); //same thing, uses default

• If we want, we can make one of the choices a default:

Standard Template Library
Overview

• STL (Standard Template Library) was created
and designed during the standardization of
C++

• It provides template classes of general use to
implement algorithms and data structure like
vectors, lists, queues and stacks

• Being template based it is general and efficient

• It is made of three elements: containers,
iterators and algorithms

• Containers are objects which contain other
objects; vector, list, queue, stack

• Iterators are similar to pointers; they are useful
to get access to a container like a pointer to an
array; like pointers iterators can be
dereferenced with *, incremented or
decremented

• Algorithms contain code to manipulate
containers, like initialization, sorting, search…

Vector

• Implements a dynamic array
#include <vector>
using namespace std;
struct Entry{

string name;
int number;

};

vector<Entry> phone_book(1000);

cout << phone_book[0].entry << cout << phone_book[0].number;

phone_book.resize(phone_book.size()+10);

//vectors have correctly behaving copy constructors and copy assignment
vector pb2=phone_book;

Warning: vector does not provide range checking:
Entry e=phone_book[10000];

easy to change size

copies all elements, can be expensive

out of range?

• Other member functions:
– empty() //return true/false if the vector is empty
– clear() //remove all elements in the vector
– size() //return the size of the vector
– push_back(const T &) //insert an element at the end of the

vector

• Use the iterator:

vector<double> v(10);
vector<double>::iterator p; //p is an iterator of vector<double>

p=v.begin();
while(p!=v.end())
{

*p=0.0;
p++;

}

int k=0;
for(int k=0;k<v.size();k++)

v[k]=0.0;

• Insert/erase elements
vector<double> v;
vector<double>::iterator p; //p is an iterator of vector<double>

for(int k=0;k<10;k++)
v.push_back(0.0);

p=v.begin();
p+=2;

v.insert(p, 5, 1.0); //insert 5 times 1.0 at position pointed to by p

p=v.begin();
p+=2;

v.erase(p,p+5);

vector<double> v2;
p=v.begin();
v2.insert(p, v1.begin(), v1.end()); //insert v1 in v2

List
• It is a bidirectional list
• Different than vector, only sequential access
• Easier to insert/remove elements

#include <list>
using namespace std;

list<Entry> phone_book;

Entry e;
phone_book.push_front(e); //add at beginning
phone_book.push_back(e); //add at end

phone_book.insert(p, e); //add before the element referred to by p
phone_book.erase(p); //remove element referred to by p

Entry e=phone_book[0]; //error [] not available for list…, must use iterators

• Using iterators to access elements of a list

// example search s in phone_book
Entry s;
s.name=“Foo”;
s.number=11111;

list<Entry>::iterator i;

for(i=phone_book.begin(); i!=phone_book.end(); ++i)
{

if (s.name==(*i).name)
cout << (*i).name << “ “ << (*i).number << “\n”;

}

or, since we are not going to modify
elements, list<Entry>::const_iterator i

• Notice that the use of iterators makes containers
interchangeable. In the above example list<Entry> can
be substituted with vector<Entry>

returns the element after the last one

• Easy to sort a list:
list<int> myList;

for(int k=0;k<10; k++)
myList.push_back(rand());

myList.sort();

• Merging lists:

list<int> list1;
list<int> list2;

for(int k=0;k<10; k+=2) //list1 is 0,2,4,6,8
list1.push_back(k);

for(int k=1;k<11;k+=2) //list2 is 1,3,5,7,9
list2.push_back(k);

list1.merge(list2); //list 2 is empty, list1 is 0,1,2,3,4,5,6,7,8,9

Map
• Looking up a name in a list of (name,number) pairs is tedious
• In addition a linear search can be inefficient for long lists
• A map is a more suitable container for such tasks

map<string, int> phone_book;

• We can search in the map a value of its first type (the key); the
map returns the element whose key matches the one we
specified

string s=“Foo”;
map<string, int> iterator p;
p=phone_book.find(s);
if (p!=phone_book.end())

cout << (*p).first << " " << (*p).second << endl;

in our case this is the “string” part in our case this is the “int” part

• How to insert elements in a map

pair<string,int> tmp;
tmp.first=“Foo”;
tmp.second=424242;

phone_book.insert(tmp);

or:

phone_book.insert(pair<string, int>(“Bar”, 1234567));
….

• A map can be indexed by the value of the key (the first element),
to get the corresponding value (the second element)

string s=“Foo”;
int i=phone_book[s];
if (i!=0)

cout << s << " " << i << endl;

return the second element if found (0
otherwise)

More Advanced Topics

Algorithms

• Containers are not really useful on their own, most of
the time we want to manipulate the data they contain

• Example: sort, print, remove elements, extract
subsets, search…

• STL contains algorithms (usually template functions)
to simplify these operations

• To use STL algorithms you #include <algorithm>

Examples:
• Count elements in a container with count and count_if

vector<bool> v;
// suppose we fill v with random true/false

i=count(v.begin(), v.end(), true); //count all elements in v s.c. v[]==true

• Another example:
bool dvidesBy3(int i)
{

if ((i%3)==0)
return true;

return false;
}

vector<int> v;
// fill v…
i=count_if(v.begin(), v.end(), dividesBy3)

Function Object

class ParF
{

double a;
double b;
double c;

public:
ParF(double aa, double bb, double cc)
{

a=aa;
b=bb;
c=cc;

}
double operator()(double x)
{

return (a*x*x+b*x+c);
}

};

int main()
{

ParF f(1,0,1); //x^2+1
for(int k=-10;k<10;k++)
{

double x=k;
cout << f(x);

}
return 0;

}

overload operator()

call f.operator()

More stuff…

• How polymorphism is implemented in C++
• exceptions
• return const copy
• return type optimization
• self assignment in copy operator
• use of private copy constructor to protect

accidental copy
• const cast implementation

References

Linguaggio C, B.W. Kernighan, D.M. Ritchie, Jackson
Libri

C++ Seconda Edizione, H. Schildt, McGraw Hill
The C++ Programming Language, Bjarne Stroustrup,

Addison Wesley
Thinking in C++ Volume I, Bruce Eckel, Prentice Hall

(online: www.bruceeckel.com)
Thinking in C++ Volume II, Bruce Eckel, Prentice Hall

(online: www.bruceeckel.com)

