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A number of internal model concepts are now widespread in
neuroscience and cognitive science. These concepts are
supported by behavioral, neurophysiological, and imaging data;
furthermore, these models have had their structures and
functions revealed by such data. In particular, a specific theory
on inverse dynamics model learning is directly supported by
unit recordings from cerebellar Purkinje cells. Multiple paired
forward inverse models describing how diverse objects and
environments can be controlled and learned separately have
recently been proposed. The ‘minimum variance model’ is
another major recent advance in the computational theory of
motor control. This model integrates two furiously disputed
approaches on trajectory planning, strongly suggesting that
both kinematic and dynamic internal models are utilized in
movement planning and control.
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Abbreviations
DLPN dorsolateral pontine nucleus
MST medial superior temporal
OFR ocular following responses
VPFL ventral paraflocculus

Introduction
Internal models are neural mechanisms that can mimic the
input/output characteristics, or their inverses, of the motor
apparatus. Forward internal models can predict sensory
consequences from efference copies of issued motor com-
mands. Inverse internal models, on the other hand, can
calculate necessary feedforward motor commands from
desired trajectory information.

Fast and coordinated arm movements cannot be executed
solely under feedback control, since biological feedback
loops are slow and have small gains (Figure 1a). Thus, the
internal model hypothesis (Figure 1b) proposes that the
brain needs to acquire an inverse dynamics model of the
object to be controlled through motor learning, after which
motor control can be executed in a pure feedforward man-
ner. In theory, a forward model of the motor apparatus
embedded in an internal feedback loop can approximate
an inverse model.

The internal model concept has its origin in control theory
and robotics, but Ito [1] proposed almost 30 years ago that
the cerebellum contains forward models of the limbs and
other brain regions. More recently, internal models have
attracted a broader range of specialists (e.g. neural network

modelers, connectionists and neurophysiologists [2–4]),
and have been studied increasingly seriously as one of the
major theories of motor control and learning in neuro-
science and cognitive science. Accordingly, in the past few
years, much more direct and convincing data than ever
before have been accumulated. Such data can already
show the existence, structures, learning, functions and
anatomy of internal models. Of particular importance, we
have seen significant theoretical advances in elucidation of
the generalization, multiplicity and switching of internal
models, and their possible use in trajectory planning.

In this review, I will discuss data supporting the existence
of internal models. It has been shown that the behavioral
paradigms in use are diverse and include adaptation to force
fields, posture control, grip-force–load-force coupling, ocu-
lomanual coordination, and the vestibular system. An
explanation will be given on points of controversy between
the equilibrium point control hypothesis and the internal
model hypothesis, and some clues towards their resolution
will be presented. Recent neurophysiological and imaging
studies that suggest that the cerebellar cortex is a major site
of internal models will also be discussed. Furthermore,
structures of internal models will be explored by ‘general-
ization’ experiments; modularity and multiplicity are
suggested by the data obtained. Finally, two major
approaches to trajectory planning will be reviewed and a
new theory will be introduced to integrate them.

Existence of internal models 
When subjects first undertake point-to-point arm reaching
movements under force fields which effectively change
dynamic characteristics of the arm, their hand trajectories
are distorted compared with the normal, roughly straight
paths; also, the end point errors are large, especially in the
direction of the applied force. The force fields generated
predetermined forces which depended on the state space
point (position, velocity), and were produced by a robot
manipulandum [5] or by a rotating room [6,7•]. After
repeated trials, the hand trajectories gradually become nor-
mal, straight paths, and the end point errors decrease in
size. However, when the force fields are removed sudden-
ly after this adaptation has occurred, the trajectories
become distorted and the end-point errors become large in
the opposite direction to the previously applied force.
Such an occurrence can readily be explained as follows by
the adaptation of the inverse dynamics model of the arm to
the applied force field (see Figure 1b). 

Under normal conditions, the inverse dynamics model cal-
culates motor commands which appropriately compensate
the arm dynamics. Under the altered dynamics conditions,
in contrast, the motor commands are insufficient to com-
pensate for the applied force, and this leads to distortions
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in the trajectories and large end-point errors. During
repeated trials, the inverse dynamics model changes to the
inverse of the combined arm dynamics and the applied
force field. Then, normal trajectories reappear and the
end-point errors are reduced. This adaptation is assumed
to involve plastic changes of the synaptic efficacy of neu-
rons constituting the inverse dynamics model. With the
sudden removal of the applied force field, however, the
inverse dynamics model continues to generate the motor
commands to compensate for the arm dynamics, as well as
the non-existing force field, and this leads to distortions in
the trajectories in the opposite direction.

The most convincing set of data for the existence of forward
models comes from studies on coordination between reach-
ing and grasping. When an object is held with the tips of the
index finger and thumb on either side (Figure 2a), the grip
force is precisely controlled (Figure 2b) so that, under nor-
mal conditions, it is just slightly greater than the minimum
grip force needed to prevent slip [8]; this is also so when the
arm dynamics is altered by a robot [9]. Such a grip-
force–load-force coupling is explained by a framework that
contains both the inverse and forward models of the arm, as
shown in Figure 2c. Functional magnetic resonance imaging
(fMRI) studies have revealed cerebellar activity specific to
grip-force–load-force coupling [10•], suggesting the exis-
tence of forward models in the cerebellum. In principle, the
scheme shown in Figure 2c can be generalized to the coor-
dination of any combined movements (e.g. eye and hand

movement, or right-hand movement and left-hand move-
ment) in any part of the body. Oculomanual coordination
[11••], and bi-manual tracking (E Nakano, DM Wolpert,
personal communications) are examples.

Internal models were also studied in the sensory system for
processes other than motor control. The vestibular system
is composed of semicircular canals, which report any angu-
lar acceleration, and otolith organs, which respond to any
linear acceleration. Because the otolith responds to both
the occurrence of linear acceleration and gravity, it is com-
putationally difficult to analyse the ambiguous sensory
information [12]. Through the use of dexterously designed
vestibular stimuli and the examination of resulting eye
movements in monkeys [13] and humans [14], internal
models have been suggested to estimate linear accelera-
tion and gravity from the canal and otolith outputs. This
internal model can be classified as an inverse model of the
sensor physics with acceleration and gravity as its inputs.

The necessity for internal models in motor control has been
one of the central issues of debate in relation to equilibri-
um-point control. Muscle and peripheral reflex loops have
spring-like properties that pull joints back to their equilib-
rium positions by generating a restoring force against
external perturbations. This viscoelasticity can be regarded
as peripheral feedback control gain, which is adjustable by
regulating the associated muscle co-contraction level and
reflex gain. It has been hypothesized that by exploiting this

Figure 1

Feedback and feedforward control using an
inverse model of a controlled object. (a) In
feedback control, the realized trajectory is
compared with the desired trajectory, and the
error is computed. The feedback motor
command is generated from this error using a
relatively simple algorithm, such as a
proportional, integral and derivative feedback
controller. In robotics, almost all practical
applications depend solely on feedback
controls. This is because feedback delays in
artificial systems can be made small; hence,
sampling and control frequencies can be quite
high (from 500–10000 Hz). In biological motor
control, however, the delay is very large. For
visual feedback on arm movements, the delay
ranges from 150–250 ms. Relatively fast spinal
feedback loops still require 30–50 ms time
delays. These are very large compared with the
movement duration of very fast (150 ms) to
intermediate (500 ms) movements. Because
time delay occupies a large proportion of
movement execution time, and feedback gains
cannot be set high because of instability due to
large delays, fast and smooth movements
cannot be executed depending solely on
feedback control. Muscle intrinsic mechanical
properties produce proportional (stiffness) and
derivative (viscosity) gains without delay.
However, these viscoelasticities are small for
well-trained movements [21,23•]. (b) If an

inverse dynamics model is serially-connected
with the controlled object, the serial system
gives a mathematical identity function. That is,
the output (i.e. the realized trajectory) is
identical to the input (i.e. the desired trajectory).
Thus, the inverse model, if it exists and can be
learned, becomes an ideal feedforward
controller. In biological systems with large

feedback delays and small feedback gains,
internal models are the only computational
possibility for fast and well coordinated
movements. Even for artificial robotic systems,
if reduction gears are not used (e.g. direct drive
motors, artificial muscles, hydraulic actuators),
inverse models are required (see, for example,
the URL http://www.erato.atr.co.jp/DB/).
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viscoelasticity, the brain can control the limbs simply by
commanding a series of stable equilibrium positions
aligned along the desired movement trajectory (i.e. the
equilibrium-point control hypothesis) [15–17,18•]. In par-
ticular, it was once advocated that internal models are not
necessary provided that the brain utilizes equilibrium con-
trol. This theory, however, requires that viscoelastic forces
increase as the movement speeds up because the dynamic
forces acting on the multijoint links grow in rough propor-
tion to the square of the velocity. On the other hand, the
alternative hypothesis (i.e. the internal model control,
shown in Figure 1b), proposes the realization of a fast and
accurate movement even with low viscoelastic forces. A
point of controversy here is whether the CNS relies on high
viscoelastic forces without internal models [15–17,18•] or
utilizes acquired internal models with low viscoelastic
forces [19–21,22•]. Recent observations of a relatively low
stiffness during well-trained movements have supported
the existence of internal models [21,23•].

Reports showing that the electromyogram (EMG) is high-
er in a novel environment than in a normal environment

[24], however, have supported the empirical observation
that any stiffness at the beginning of learning may not be
as low as that after extensive training. Computational
models have suggested that there is an advantage to inte-
grating the muscle viscoelasticity and internal models for
efficient learning of internal models [25,26]. Accordingly,
one of the major future experimental objectives is to elu-
cidate how these two schemes are integrated; Osu, Kato
and Gomi have obtained new data suggesting a specific
scheme of integration (R Osu, H Kato, H Gomi, personal
communication).

Internal models in the cerebellum
It is conceivable that internal models are located in all
brain regions having synaptic plasticity, provided that
they receive and send out relevant information for their
input and output. We have good reason to believe that at
least some internal models are acquired and stored in the
cerebellar cortex. For example, there is a new computa-
tional theory [27••] that allocates supervised learning,
reinforcement learning, and unsupervised learning to the
cerebellum, the basal ganglia and the cerebral cortex,
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Figure 2

Coordination of grip force and load force, and a
computational model based on internal forward
and inverse models. (a) When an object is held
with the tips of the index finger and thumb on
either side, the normal grip force on the contact
surface allows for the development of a
frictional force, which prevents the object from
slipping. (b) The grip force is precisely
controlled so that it is just slightly greater than
the minimum grip force needed to prevent slip.
(c) This grip-force–load-force coupling is
explained by a framework that contains both
the inverse and forward models of the arm.
Take, for example, a point-to-point arm-reaching
movement that takes place while the hand is
grasping an object. The inverse model of the
combined dynamics of the arm, hand and
object calculates the necessary motor
commands from the desired trajectory of the
arm. These commands are sent to the arm
muscles as well as to the forward dynamics
model as the efference copy. Then, the forward
model can predict an arm trajectory that is
slightly in the future. Given the predicted arm
trajectory, the load force is calculated; then, by
multiplying a friction coefficient and a safety
factor, the necessary minimum level of grip
force can be calculated. To realize this grip
force time course, motor commands are sent to
hand muscles. This model predicts that three
different computational elements are necessary
for grip-force–load-force coupling: the inverse
model for arm reaching; the forward model for
arm trajectory prediction; and the grip force
controller for grip execution. Tamada et al.
(T Tamada et al., personal communication) have
recently identified three fMRI active loci
corresponding to these three elements.
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respectively. This is partially based on previous cerebel-
lar learning theories [28–30,31••]. The learning
acquisition of internal models is best performed by
supervised learning, and accordingly, the cerebellar cor-
tex seems the most appropriate location as the storage
site of internal models. 

The most convincing neurophysiological data for internal
models were obtained for eye movements. Kawano and his
colleagues [32] studied neural circuits involved in control-
ling ocular following responses (OFR), which are reflex eye
movements with a short latency. These circuits stabilize
retinal images and are driven by large visual field move-
ments. It is known that they involve the MST (medial
superior temporal) area, dorsolateral pontine nucleus
(DLPN), and the ventral paraflocculus (VPFL) of the cere-
bellum [32]. Figure 3 summarizes neural networks for OFR
based on [32]; a similarity to the feedback–error–learning
model [30] is suggested. In accordance with the theory, the
climbing fiber inputs to Purkinje cells during OFR carry
error signals in the motor command coordinates, and
accordingly, their temporal waveforms can be well repro-
duced by the inverse dynamics model of the eye [33••]. In
Figure 3, the simple spikes of the Purkinje cells during
OFR are well fitted by the inverse dynamics model of the
eye, but share an approximate mirror image relationship
with the climbing fiber inputs. For both the climbing fibers
and simple spikes, the position coefficients have the oppo-
site sign to the real inverse dynamics model of the eye
[34,35••], suggesting that the VPFL comprises a major,
dynamic part of the inverse dynamics model, and also that
other brain regions complement it. The data from monkeys
could be strengthened by recording in the flocculus of cats
during optokinetic responses [36•]. In particular, the nega-
tive sign of the position coefficient was confirmed, even
with the inclusion of the slide term. 

The MST area and DLPN send visual information to the
VPFL [37], and drastic changes of neural codes occur at
the parallel fiber Purkinje cell synapses. That is, in the
area MST and DLPN, population coding is used: the opti-
mum directions of the visual stimuli cover the entire 360°
and the optimum velocities are widespread, and many dif-
ferent temporal waveforms of firings can be observed
[32,37]. On the other hand, temporal rate coding is used for
Purkinje cells: either downward or ipsilateral visual motion
is optimal, the firing rate increases with the stimulus veloc-
ity, and the temporal waveform is stereotypically
reconstructed by the inverse dynamics model. Computer
simulations based on the feedback–error–learning theory
[38,39] have shown that changes to neural codes, as well as
the learning acquisition of the inverse dynamics model,
can be reproduced based on the known synaptic plasticity
of Purkinje cells, that is, long-term depression, long-term
potentiation, and rebound potentiation.

Studying arm movements is much more difficult than study-
ing eye movements with respect to the coordinate frame in

which neural firings are encoded [40]. Accordingly, examin-
ing inverse dynamics representations is very difficult.
However, strong physiological evidence suggests that the
climbing fiber inputs also work to encode error signals for
arm movements [41••]. In addition, imaging, physiological
and lesion studies have demonstrated that the cerebellum is
at least one of the possible sites for internal models for arm
movements [42••,43••,44•,45•]. A theoretical model — that
the cerebellum constitutes a major part of the parallel
inverse models of the arm has been proposed [46••].

The most frustrating missing link in the cerebellar learning
hypothesis is the computational clarification of peculiar
physiological and anatomical characteristics of inferior
olive neurons [47]. A compartmental biophysical model of
inferior olive neurons electrically coupled by gap junctions
has been found to reproduce many such physiological data
both in vivo and in vitro [48••]. Furthermore, there has
been a suggestion that there is ‘desynchronization’ of cou-
pled neurons by gap junctions [48••]. This theoretical work
may in fact provide an important clue towards elucidating
the computational significance of the above missing link
(N Schweighofer, K Doya, M Kawato, unpublished data).

Structures of internal models
The functional structures of internal models can be probed by
the so-called ‘generalization experiment’ [49–52,53•,54,55•].
Humans or animals are trained for a specific set of movement
trajectories with an altered kinematic or dynamic perturba-
tion. After sufficient learning, the organism’s ability to cope
with different trajectories or movements in a different part of
the workspace in which the motor apparatus can move is
examined. If ‘generalization’ is considered perfect, new tra-
jectories are controlled precisely from the beginning. If
generalization is considered to not exist, the performance of
subjects undergoing new experiences is as poor as those with
no prior learning. The brain does not memorize a simple asso-
ciation between movement instances and motor commands.
Rather, it has an internal memory of the motor apparatus and
the external world in the form of an inverse dynamics model
with state–space representations. The motor commands at
each instance are calculated by a functional map from the
state–space input point, including the acceleration, velocity,
and position of the desired trajectory [51,52]. If generalization
of learning is perfect, the inverse dynamics model after learn-
ing is very precise over the entire state–space, and must
therefore take the form of a parametric and analytical model.
In contrast, if there is no generalization apart from the experi-
enced trajectory, the inverse dynamics model is a local
table-look-up map. The experimental data [49–52,53•,54,55•]
suggests neither is the case. Instead, an intermediate general-
ization level has been consistently reported. It is possible,
therefore, that internal models in the brain are similar to arti-
ficial neural networks or connectionist models in their
generalization capability.

An imperfect generalization of internal models would
strongly suggest the need for modular structures [56]. This
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is because a single gigantic internal model with an imper-
fect generalization capability cannot possibly learn or deal
with a whole range of different behavioral situations.
However, different modules cannot be entirely indepen-

dent from one another because they all exhibit some
degree of generalization. This means that some interfer-
ence may occur between multiple internal models unless
an efficient computational mechanism exists to regulate
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Change of neural codes and learning of inverse dynamics model in
the cerebellum for OFR. The neurophysiological data shown in (a) and
(c) are taken from [32,33••,37] and reproduced with permission.
(a) The firing characteristics of MST, DLPN and VPFL neurons. (b) A
schematic neural circuit for OFR. (c) Temporal firing patterns of VPFL
Purkinje cells in upward eye movements induced by upward visual
motion. (a) (i) Peri-stimulus time graphs of the firing rates of a typical
neuron in each of the three areas. The origin of time is taken as the
onset of visual stimulus motion. (ii) Histograms of a number of cells
within a given range of the optimum stimulus speeds. (iii) Polar plots
of optimum stimulus directions. U, C, D and I indicate upward,
contralateral, downward, and ipsilateral, respectively. VPFL Purkinje
cells were classified into two groups, vertical cells and horizontal
cells, based on simple spike (green) and complex spike (red) optimum
directions. (b) The circuit can be divided into two main pathways. The
upper part shows the cortico–cortical (the cerebral cortex to the
cerebellar cortex) pathway, which corresponds to the feedforward arc
of the feedback–error–learning model. The lower part of the pathway
shows the phylogenetically older feedback pathway containing the
accessory optic system, which corresponds to a crude feedback
controller in the feedback–error–learning scheme. The theory predicts
that the accessory optic system first determines the motor command
coordinates (upward for PT [pretectum], and contralateral for NOT
[nucleus of optic tract]). This motor frame of reference is conveyed to

the inferior olive nucleus, and determines the optimum stimulus
directions of the climbing fiber responses, which are reflected in
complex spikes (aiii, red lines). Based on known synaptic plasticity
(long-term depression, long-term potentiation, rebound potentiation)
of Purkinje cells, it is predicted that the optimum stimulus direction of
each Purkinje cell for simple spikes and complex spikes is 180°
opposite. (aiii, right shows that this is the case). (c) Accumulated
temporal firing patterns of nine Purkinje cells (black curves) and their
reconstruction based on inverse dynamics model (red and green
curves). The model further predicts that the temporal firing patterns of
(i) simple spikes and (ii) complex spikes should be mirror images of
each other. Kobayashi et al. [33••] confirmed this, and furthermore
reconstructed simple spike as well as complex spike firing waveforms
by the inverse dynamics model. This strongly supports the most
critical assumption of the feedback–error–learning scheme that the
climbing fiber inputs convey error signals in the motor command
coordinates, and the simple spike firing is learned by being guided by
this error signal through synaptic plasticity. Yamamoto et al. [38,39]
reproduced the dramatic change of neural codes, and the learning
acquisition of simple spike firing patterns, as well as eye movement
waveforms based on Purkinje cell synaptic plasticity. AOS, accessory
optic system; EOMN, extraocular motor neuron; LGN, lateral
geniculate nucleus; MT, middle temporal area; STS, superior
temporal sulcus. 
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Figure 4
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Multiple paired forward and inverse models (MPFIMs) [62••] in the
context of grip-force–load-force coupling for multiple manipulated
objects. The computational scheme shown in Figure 2 is fine as long
as only a single object is manipulated. But a single internal model
cannot deal with a large number of objects with different kinematic and
dynamic properties. This is because incomplete learning generalization
leads to a catastrophic interference between different learning epochs
and between different motor primitives. MPFIM postulates a
computationally coherent principle to overcome this difficulty. The brain
prepares many modules, each of which comprises three elements: a
forward model, an inverse model, and a responsibility predictor.
Learning, switching and blending of these multiple modules are, in
principle, controlled by the relative goodness of predictions made by
many forward models. Furthermore, predictive switching between
modules is performed by responsibility predictors based on contextual
information. In the Bayesian framework, the outputs from the
responsibility predictors determine prior probability about which
module will be recruited for a given environmental situation, and the
prediction error of each forward model determines which module is
likely to be appropriate for the situation. A soft max function, gathering
all products of the prior probability and the likelihood, finally computes
the responsibility signal (0–1), which specifies the control contribution
of the inverse model, as well as the learning responsibility of inverse
and forward models within each module. For example, suppose that a
person needs to manipulate one of several objects (see upper inset).

By visual information of the object, an appropriate module for, say, a
racket could be pre-selected. On actual manipulation of the object, the
forward model for the racket module predicts sensory consequence
from the efference copy of issued motor commands. If its prediction is
good, that module will continue to be used. However, if the visual
information is erroneous and the object actually grasped is a fork, the
racket module prediction is bad and the fork module prediction is
better, thus the racket module will be turned off and the fork module
will be turned on after actual movement execution. Haruno et al. [63••]
simulated a simple version of this ‘size–weight illusion’. Contextual
information for the responsibility predictor could be virtually anything
useful, such as vision, audition, tactile information, reasoning, verbal
instruction, sequence of movement elements, outputs from other
responsibility predictors, descending signals from higher brain regions,
and so on. This gives versatile cognitive capability to MPFIM. From
previous studies on the interference of two learning epochs
[51,52,57,58], we infer that if some contextual signal is very unusual
and consequently strong (e.g. a unique combination of tactile and
visual information if an arm is attached to a robotic manipulandum),
other contextual signals have smaller influences (e.g. color is too weak,
but posture and time still have discriminating effects). Because MPFIM
introduces a blending of multiple inverse dynamics model (IDM) inputs,
a finite number of modules could in principle deal with a vast number
of different objects (see simulation [63••], as well as supporting
behavioral studies [59,61••]). 
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their learning and involvement in a specific situation.
Different internal models do seem to compete with each
other in learning, especially for events involved in tempo-
ral proximity [57,58]. Interestingly, it has been found that
multiple internal models can be mixed in an adaptive way
when necessary [59,60••,61••].

On the basis of the findings described above, a new theo-
ry has recently been developed where multiple internal
models can be learned and combined adaptively
[62••,63••]. Figure 4 shows how this new theory can be
used to explain the manipulation of many different objects
with a finite number of internal model modules, while at
the same time efficiently utilizing contextual information
such as the vision of objects, verbal instructions, or the
sequence of object presentation. 

Trajectory formation 
Computational theories on how arm reaching trajectories
are planned have been a central issue in motor control since
it was shown that they involve roughly straight hand paths
and bell-shaped velocity profiles [64]. Many of the different
computational models can be classified into two types:
kinematic models such as the minimum jerk model [65],
and dynamic models such as the minimum torque-change
model [66]. Because these two classes of models enable the
experimental testing of qualitatively different predictions,
rich data sets are now available for discriminating between
the two types (for kinematic planning and against dynamic
planning, see [67–70]; for dynamic planning and against
kinematic planning, see [71,72•,73•,74••]). However, analy-
ses have been complicated and there remain areas of
controversy [75]. 

The integration of these two approaches has been suggest-
ed [76•], and an ingenious theory of integration was recently
proposed by Harris and Wolpert [77••]. Their minimum
variance model also takes the form of an optimization
model, in the tradition of many previous models. The objec-
tive for optimization in this model is to minimize the end
point variance, and is therefore a purely kinematic variable.
This variance, however, critically depends on the magnitude
of the motor commands. Consequently, the whole optimiza-
tion process is completely dynamic — that is, the optimal
trajectory critically depends on the dynamics of the muscles
involved, the motor apparatus, and the environment.

The ‘minimum variance model’ is thus kinematic in its
objective function, but the computational process is
dynamic, and the trajectory depends on the dynamics.
This model can be viewed as a version of the minimum
motor command change model [75]. This is because in the
integral of the objective function, the square of the motor
commands is increasingly more heavily weighted as the
time approaches the movement end. Finally, because the
computational process takes into account both the kine-
matics and dynamics of the motor task, it is important for

both kinematic and dynamic internal models to be utilized
for the trajectory planning, either implicitly or explicitly.

Conclusions
The concepts concerning internal models have now been
well supported by behavioral studies in the field of senso-
ry motor control. Neurophysiological studies have just
begun but should be fruitful in the next five years.
Theoretically, the concept should be extended from pure
sensory motor control to cognitive domains as we have a
flood of data suggesting cerebellar involvement in higher
cognitive functions such as language [78,79,80••]. This is
especially important because the cerebellar computational
principle can be ubiquitous, on the basis of the uniform
neural circuit of the cerebellar cortex, despite diverse func-
tions of different cerebellar loci. In the near future, the
author expects major breakthroughs in the concepts and
computational theories of internal models entering into
cognitive domains such as communication, thinking, and
consciousness, on the basis of their firm foundations in
sensory motor integration.
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