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In reaching for objects around us, neural processing transforms
visuospatial information about target location into motor com-
mands to specify muscle forces and joint motions that move the
hand to the desired location1,2. In reaching movements, extent
and direction have different sources of variable3 and systematic
errors4–6, suggesting that hand paths are initially planned in vec-
torial coordinates without taking account of the joint motions7.
The movement vector is specified as an extent and direction from
the initial hand position. Kinematic accuracy depends on learn-
ing a scaling factor from errors in extent and reference axes from
errors in direction8. The learning of new reference axes shows
limited generalization8 and is coded in extrinsic coordinates
(J.W.K., Z. Pine and C.G.; in preparation)9,10. Finally however,
vectorial information needs to be transformed into muscle forces
for movement to take place. This transformation needs to take
account of the biomechanical properties of the moving arm,
notably the interaction torques produced at each joint by motions
of all the limb segments11,12. The capacity to anticipate these
dynamic effects is understood to depend on learning an internal
model13,14 of musculoskeletal dynamics and of other forces acting
on the limb. Proprioceptive feedback is critical for developing
dynamic models: in patients with large-fiber sensory neuropa-
thy who lack proprioception, reaching movements show charac-
teristic abnormalities in their trajectories and endpoints. The
errors, which vary with movement direction, arise because feed-
forward commands to muscles are no longer adapted to the
movement-dependent torques resulting from intersegmental
interactions15–17. Correspondingly, a proprioceptively deaffer-
ented patient that we studied is unable to learn the altered iner-
tial configurations with or without visual feedback (Virji-Babul
et al., Soc. Neurosci. Abstr. 23, 202, 1997). In contrast, similar

patients can learn the spatial transformations needed for mirror
drawing18. Like learning a novel reference frame, learning of novel
dynamics generalizes poorly across directions14,19 but is coded in
intrinsic rather than Cartesian coordinates13,20. Thus, psy-
chophysical evidence suggests that the coordinate systems and
the sensory signals used to learn new internal kinematic models
differ from those used to learn new internal models of interseg-
mental dynamics.

Various computational approaches to motor learning also use
sensory feedback about movement errors to train internal mod-
els. However, such approaches do not distinguish explicitly
between the kinematic and dynamic errors that train internal
models, or between the sensory channels that might carry the
relevant information21.

A series of studies demonstrates consolidation and interfer-
ence in motor learning22,23: when subjects adapt to a velocity-
dependent rotatory force-field acting at the hand, performance
improves more rapidly in relearning the same task the next day
(consolidation). This improvement did not occur if subjects prac-
ticed moving in a second force field rotating in the opposite direc-
tion within six hours of learning the first (interference). Learning
is thought to take place initially within local regions of cortex in
short-term working memory, whereas consolidation involves the
redistribution of learned information to other regions for long-
term memory storage23. Interference presumably occurs because
a second set of associative pairs competes with the first for limited
working-memory space and cancels it24.

To determine whether the learning of hand kinematics and
limb dynamics make use of separate working memory systems,
we examined consolidation and interference in adapting to novel
spatial and inertial perturbations. If the two processes are distinct,
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learning novel dynamics should not
interfere with the consolidation of a pre-
viously learned kinematic transforma-
tion. Moreover, it should be possible to
learn novel kinematics and dynamics in
parallel.

In one task, subjects learned to
move their hands to a series of targets
while feedback of the hand movements
was rotated counterclockwise (CCW)
by 30° around the origin, thus requir-
ing subjects to learn a rotated spatial
reference frame for kinematic planning.
In the other, subjects learned to move to the same targets when
the inertial configurations of their arms were altered by attach-
ing a 1.5-kg mass 25 cm lateral to the forearm14. This manipula-
tion altered inertial interactions at the elbow and required
subjects to learn new internal models of the intersegmental
dynamics of their limbs14. The results demonstrate that the learn-
ing of spatial and dynamic models occurs through independent
channels.

RESULTS
Learning a rotated reference frame
On each of two successive days, two groups of subjects (1 and 2,
see Table 1) learned to move a cursor to a series of targets while
the display of their hand path on a computer monitor was rotat-
ed CCW by 30°. Typical cursor paths produced when subjects
were first exposed to the 30° CCW rotation and at the end of the
first day’s session are shown in Fig. 1a. During the first cycle,
clockwise directional errors equal in magnitude to the imposed
rotation are apparent for all eight target direc-
tions. These errors were reduced rapidly at first
and more slowly thereafter. The time course
of the reduction over the training block was
well fit by a double exponential function 
(r2 = 0.91 for group 1 and 0.84 for group 2).

Consistent with prior observations showing local learning of rota-
tions8,20, errors were not reduced over successive targets within
each cycle (r = 0.03; NS for first 5 cycles), but were reduced only
over successive cycles (3.8° per cycle; r = 0.46; p < 0.0001 for first
5 cycles). Group 2 learned a 30° clockwise rotation 5 minutes
after counter-clockwise training. Both groups were retrained 24
hours later, and performance on the 2 days was compared.

Without additional practice between days, group 1 showed
substantial retention of the learning achieved on day 1 
(Fig. 1b). The mean directional error during the first cycle of
movements on day 2 was significantly lower than on the first
cycle on day 1 (17.4 ± 7.3° versus 25.2 ± 5.2°), and over cycles
2 and 3, the mean directional error did not differ significantly
from the mean error on the last two cycles of day 1 (Fig. 1c).
Thus contextual cues, presumably consisting of mismatch
between the expected and actual motion of the cursor during
the first cycle of movements, provided subjects with the infor-
mation needed to recall the reference frame they had learned

Table 1. Experimental Conditions

Group Day 1 Training Day 2 Training
Group 1 30° CCW rotation 30° CCW rotation
Group 2 30° CCW rotation → 30° CW rotation 30° CCW rotation
Group 3 Lateral mass* Lateral mass*
Group 4 Lateral mass* → medial mass* Lateral mass*
Group 5 30° CCW rotation → lateral mass* 30° CCW rotation
Group 6 30° CCW rotation plus lateral mass 30° CCW rotation plus lateral mass 

* No visual feedback
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Fig. 1. Kinematic learning: consolidation and inter-
ference. (a) Representative screen-cursor paths for
subject SD who experienced the 30° CCW rota-
tion for the first time (cycle 1) and at the end of
training (cycle 33). For clarity, in the first cycle, the
eight targets are divided into four sets of two tar-
gets. (b, d) Learning curves for group 1 and 2. The
mean directional error per cycle is plotted against
cycle number during the training block on days 1
and 2. Points are means across subjects and fitted
to a double exponential function. Gray represents
learning on day 1 and black represents learning on
day 2. The dashed line represents mean subject per-
formance at the end of the baseline familiarization
block. The larger points represent the cycles used
in the statistical analyses in c and e. (c, e) Bar charts
for Group 1 and 2 showing the mean directional
error for the last baseline block (BSL, hatched bar),
cycles 2 and 3 (First), and cycles 32 and 33 (Last) on
day 1 (gray bars) and day 2 (white bars). Significant
differences were found across baseline, day 1 and
day 2 (Group 1, ANOVA F4,25 = 31.39; p < 0.0001;
Group 2, ANOVA F4,25 = 18.34; p < 0.0001). The
horizontal lines indicate significant comparisons at
post-hoc analysis.

a

b c

d
e

M
ea

n
 (

d
eg

re
es

)

M
ea

n
 ±

s.
e.

 (
d

eg
re

es
)

M
ea

n
 ±

s.
e.

 (
d

eg
re

es
)

M
ea

n
 (

d
eg

re
es

)

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
N

at
u

re
 A

m
er

ic
a 

In
c.

 • 
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



1028 nature neuroscience  •  volume 2  no 11  •  november 1999

articles

on the previous day. In contrast, group 2
showed no significant difference in the learn-
ing curves between day 1 and day 2 (Fig. 1d
and e). Thus, learning the opposite rotation
interfered with consolidation of the previous-
ly learned rotation. This retroactive interfer-
ence is the kinematic counterpart of that
reported in learning a dynamic perturbation22.

Learning a new dynamic internal model
Attaching a load medial or lateral to the longitudinal axis of the
forearm displaces the center of mass of the forearm segment,
causing large changes in elbow interaction torques. The new iner-
tial configuration results in large errors in initial direction and
in highly curved trajectories14. Because hand movements in dif-
ferent directions are associated with different relative motions of
the elbow and shoulder, inertial errors vary systematically with
direction. With practice, however, subjects model these novel
intersegmental dynamics and generate appropriate anticipatory
muscle torques to produce a straight path14.

Subjects in groups 3 and 4 learned to move a lateral load 
(Fig. 2a) without visual feedback on two successive days: on
day 1 group 3 was exposed only to the lateral load, whereas
group 4 also learned a medial load five
minutes later (see Table 1). Initially,
subjects showed increased trajectory
curvature, increases in the area circum-
scribed by the path and initial direc-
tional areas, all of which varied
systematically with movement direction
(Fig. 2b). The directional variation in

normalized area, which we quantified as the standard devia-
tion of the means across directions within each cycle, repre-
sents an error in dynamic planning and is reduced with
practice (gray area in Fig. 2c). On day 2, subjects in group 3
fully retained the learning achieved on day 1 (Fig. 3a and b):
there was no significant difference in the directional variation
of normalized area of cycles 2 and 3 on day 2 and the last 2
cycles on day 1. Presumably, moving the load to the starting
position provided subjects with enough contextual informa-
tion about the dynamic conditions of the task for them to select
the appropriate model of inertial dynamics. As in learning a
rotated reference frame, adaptation to a dynamic perturbation
opposite to the one just learned interfered completely with
consolidation. The performance and rate of learning were iden-
tical on day 1 and 2 (Fig. 3c and d).
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Fig. 2. Dynamic learning is characterized by reduction
in direction-dependent errors. (a) Apparatus for train-
ing subjects with a medial or lateral mass. 
(b) Representative cursor paths for subject AV when he
experienced the lateral mass for the first time (cycle 1)
and at the end of training (cycle 33). For clarity, the eight
targets are divided into four sets of two targets. (c, d)
Mean normalized area per target for group 3 subjects
over the first (c) and last (d) four cycles on day 1. Error
bars represent standard deviations per target across
subjects. The gray area represents the standard devia-
tion of the mean error for each target over the target
cycle and reflects an error in adapting motor commands
to directional changes in inertial dynamics.

Fig. 3. Dynamic learning: consolidation and
interference. (a, c). Learning curves for group 3
and 4. The mean standard deviation of the nor-
malized area per cycle is plotted against cycle
number during the training block on days 1 and
2. Points are means across subjects and are fitted
to a double exponential function and single
exponential on day 2. Symbols as in Fig. 1 b and d.
(b, d). Bar charts for Group 3 and 4 showing the
mean ± standard deviation of the normalized
area. Symbols as in Fig. 1c and e. Significant differ-
ences were found across baseline, day 1 and day
2 (Group 3, ANOVA F4,25 = 7.23; p = 0.0005;
Group 4, ANOVA F4,25 = 5.40; p = 0.0028). The
horizontal lines indicate significant comparisons
at post-hoc analysis.
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Kinematics and dynamics are learned independently
To determine if the learning of a rotated reference frame and an
altered mass distribution are independent, we first asked whether
the learning of a lateral mass would interfere with subjects’ con-
solidation of a newly learned rotated reference frame. Group 5
practiced and learned to move a laterally displaced load in the
absence of visual feedback 5 minutes after learning a 30° rota-
tion. This dynamic learning was quantitatively similar to that of
subjects in groups 3 and 4. This did not interfere with the reten-
tion of kinematic learning on day 2, which was not significantly
different from that seen for group 1 (p = 0.52; Fig. 4).This is con-
sistent with independence of kinematics from dynamics.

Next, we asked if adaptation to rotation or to a lateral mass
is reduced when the two are learned concurrently. Figure 5 shows
the results of this experiment in subject group 6, who experi-
enced both the rotation and the lateral mass concomitantly on
day 1 and day 2. The reductions in directional error (Fig. 5a and
b) and in the directional variation of normalized area over time
(Fig. 5c and d) did not differ statistically from those of subjects
learning each separately in groups 1, 2 and 3 (directional error,
F3 = 0.89, p = 0.465; normalized area variation, F2 = 0.3, p =
0.745). (In all cases, comparisons were of differences between
cycles 2 and 3 at the beginning, and 32 and 33 at the end of the
training blocks.) Thus, concomitant learning of the lateral mass
did not interfere with the learning of CCW rotation or vice versa.
It should be noted that, unlike group 3 who learned the lateral
mass alone, group 6 had visual feedback of the cursor motion on
the screen during this dual learning. The
parallel learning of a novel visuomotor
transformation and a novel inertial con-
figuration in the presence of visual feed-
back makes it unlikely that the lack of

interference observed in serial learning above (group 5) result-
ed from differences in the sensory channels providing feedback.
Moreover, since adding visual feedback did not increase the rate
at which a novel dynamic configuration was learned, it is likely
that that proprioception alone provided the information need-
ed to learn the new inertial dynamics.

DISCUSSION
The present observations demonstrate three main points. First,
there is consolidation in the learning of novel kinematics and
dynamics. Second, learning of another kinematic or dynamic
model with conflicting sensorimotor mappings interferes with
the consolidation of previously learned models of the same type.
Third, the learning of novel intersegmental dynamics does not
interfere with the consolidation of a newly learned kinematic
transformation, and the two can be learned concurrently at the
same rate as singly. This indicates that the learning of kinematics
and dynamics are independent.

Current views of learning posit that both error storage and
processing occur in working memory25. For motor learning, this
would suggest that the storage of movement errors and the com-
putation of an internal model also take place in working mem-
ory. Such learning is interfered with when a perturbation requires
learning a new model in which opposite corrective adjustments
are necessary to counter the same feedback signal24. In this case,
there is a conflict in the adaptive changes required by error signals
in the two conditions. Interference with consolidation seen in
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Fig. 4. Consolidation after consecutive learning
of kinematics and dynamics. (a) Learning curves
for group 5. Symbols as in Fig. 1b and d. (b) Bar
charts for Group 5. Same key as in Fig. 1c and e.
Significant differences were found across base-
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our experiments presumably reflects this process since the bias-
es induced by the two rotations and the dynamic errors14 pro-
duced by the medial and lateral masses were opposite.

With the kinematic perturbation, learning required using
directional errors, which could only be detected visually in Carte-
sian space, to rotate the spatial representation of the target rela-
tive to the hand. Although subjects might have used either visual
or proprioceptive feedback in adapting to the lateral mass, sub-
jects were able to learn this with proprioception alone. Moreover,
subjects who were exposed to both perturbations with visual
feedback learned the new dynamics and kinematics concurrent-
ly at the same rate as when they were learned separately. There-
fore, it seems that vision is unnecessary and does not enhance
proprioceptive learning of the new internal dynamic model.

The lack of interference in consolidating a newly learned kine-
matic model by learning a new dynamic model and concurrent
learning of the two indicate that kinematic and dynamic errors
are stored and processed in distinct working memory systems.
This could occur because sensory channels are different, or
because errors are coded in different coordinate systems.

It may be thought that the lack of interference across kine-
matic and dynamic learning tasks might have occurred not
because errors in extrinsic and intrinsic coordinates are processed
through different channels, but because context was sufficiently
different to ‘label’ distinct working memory systems. Indeed, this
is predicted by a computational model26. However, this is unlike-
ly to account for our results, since learning in the dual task, in
which contextual differences do not apply, occurred in parallel
without interference or delays.

Functional imaging data are consistent with a separation in the
systems mediating the learning of kinematic and dynamic trans-
formations. Thus, in subjects using the right arm, adaptation to
lateral displacing prisms or screen-cursor rotations is associated
with activation in posterior parietal areas27,28, whose inputs are
predominantly visual. In contrast, initial learning of novel force
fields23 is associated with activity in right dorsolateral prefrontal
cortex, whereas consolidation is correlated with activity in left pos-
terior parietal cortex, left dorsal premotor cortex and right ante-
rior cerebellar cortex. We speculate that models of dynamics might
be encoded directly in the arm area of primary motor cortex since
proprioceptive information from the arm reaches this area at a
short latency29,30. Nevertheless, specific comparisons will require
using comparable motor tasks and controlling the sources and
modalities of sensory feedback, as well as studies in animals to
identify the neural networks underlying these processes.

In current computational approaches to motor learning,
inverse and forward models are both trained using a single per-
formance criterion, which necessarily combines kinematic and
dynamic errors21. Our results propose that future models should
include two independent sources of error, kinematic and dynam-
ic, computed in different reference frames and, possibly, in dif-
ferent sensory modalities.

METHODS
Six groups of 6 naive subjects (aged 19 to 36; 30 males, 6 females) were
paid to participate in the study and signed an institutionally-approved
consent form. Subjects moved a hand cursor on a horizontal digitizing
tablet (sampling rate, 200 Hz) at shoulder level from a central starting
point to a series of peripheral targets displayed on a computer monitor
along with a screen cursor. Subjects’ shoulders and wrists were restrained
and their forearms were supported on an airsled system equipped with a
rigid outrigger to which masses could be attached 25 cm medial or lateral
to the forearm. An opaque shield prevented subjects from seeing their
arms and hands at all times. In all experiments, the target set consisted of

8 circles arrayed radially at 4.2 cm from the same starting point in the
center. Targets were presented every 1.5 seconds with a tone and in a pre-
dictable CCW order.

Subjects were instructed to make straight and uncorrected out-and-
back movements, with sharply reversing direction within each target and
in synchrony with the tone (timed response task), pausing briefly in the
center before initiating the next movement. If the movement reached
the target within a time window of 320 ms before and after each tone,
the target turned gray, signaling a successful hit.

All subjects were initially familiarized with the apparatus and task dur-
ing an initial block of 33 cycles of 8 targets in the absence of any pertur-
bations (cursor feedback gain, 1:1; leftward hand movement produced
leftward cursor movement). The six different groups of subjects were
exposed to two types of perturbation which occurred concurrently or
separately on each of two successive days. In the first, a kinematic per-
turbation, whereby the screen cursor was rotated by ±30°, was imposed
unexpectedly at the time of presentation of the first target and after sub-
jects hand aligned the cursor in the center. In the second, a dynamic per-
turbation, whereby a 1.5-kg mass was placed medially or laterally to the
forearm on an outrigger attached to an airsled14 (Fig. 2a), subjects had
proprioceptive information about the impedance of the system before
being presented with any target. All conditions were experienced in blocks
of 33 cycles. The experimental protocol for all groups is outlined in Table
1.

For each movement (from the onset of the change in hand velocity in
the start circle to the velocity minimum when it returned near the start-
ing position) we determined the hand locations and bin numbers at var-
ious critical points in the trajectory. The directional error for each
movement was taken as the difference between the direction of the target
from the initial hand position and the direction of the hand at the peak
outward velocity from the same initial point3. We used the mean direc-
tional error over each cycle of eight movements to measure the time
course of adaptation to the kinematic perturbation.

Changes in hand path curvature were assessed by calculating the nor-
malized area: the area enclosed by the hand path divided by the squared
path length. To identify systematic direction-dependent changes, indica-
tive of dynamic errors, we then computed the standard deviation of the
mean errors for each target over each target cycle. The novel mass dis-
tribution also induced direction-dependent variations in initial direc-
tion; however, because subjects are unable to compensate for this error
without visual feedback, we did not use this error here20.

Differences between conditions and across days were assessed using
analysis of variance (ANOVA) followed by Bonferroni-Dunn tests. Post-
hoc tests were considered significant at p < 0.005.
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