
Baud-Bovy IIT 2010Introduction to Statistics with R

1

Introduction to Statistics with R

Gabriel Baud-Bovy

Baud-Bovy IIT 2010Introduction to Statistics with R

2

Introduction

• Generally speaking, the ultimate goal of every research or scientific 
analysis is finding relations between variables. The philosophy of 
science teaches us that there is no other way of representing 
"meaning" except in terms of relations between some quantities or 
qualities; either way involves relations between variables.

• The general objective of most studies is therefore to explain the 
variations of some variable of interest in function of the variations of 
other variables. This general objective includes more specific goals 
like
1. Identifying of variables (or experimental factors) that affect the value of 

the some other variable 
2. Measuring the strength of the relationship between two variables
3. Finding a model that predict the values of some variable from the value of 

other variables 
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Statistics

• Statistics is the “field of study concerned with (1) collection, 
organization, summarization, and analysis  of the data, and (2) the 
drawing of inferences about a body of data when only a part is 
observed” (Wayne, 1995, p. 2)

• Descriptive statistics: The branch of statistics devoted to the 
description and summarization of data.

• Inferential statistics: The branch of statistics concerned with 
methods that use a small set of data (sample) to make a decision
(inference) about a larger set of data (population).
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Descriptive statistics

• Descriptive statistics uses various mathematical formulae 
(statistics) to summarize the main characteristics of a data set:
– Central tendency: mean, median
– Dispersion: variance, standard error, range
– Distribution: quantiles

• Graphical methods (plots) provide a very powerful way to explore
and quickly extract or present information about the data.
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Inferential statistics

• The distinction between a population and a sample is essential to 
inferential statistics:

• Population: a population is an entire collection of events  in which 
you are interested (student’s scores, people’s incomes, etc.).

• Sample: A subset of the population of interest.

• Population can range from a relatively set of numbers to a very 
large (all male human beings, all italian students in third grade) or 
even infinite (all possible drawings that students could theoretically 
produce) set of numbers.

• Inferential statistics is needed because it is in general impossible to 
make an exhaustive study (i.e., observe all elements of a 
population).
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Experiments
• An experiment is any process or study which results in the 

collection of data, the outcome of which is unknown. In statistics, 
the term is generally restricted to situations in which the researcher 
has control over some of the conditions under which the 
experiment takes place.

• Not possible (or much more difficult) to draw inferences or test
hypotheses if the experiment has not been well designed.

• Description of an experiment must include a description of the 
following elements:
– the experimental units (e.g., subjects or any entity that constitute the 

focus of the study) 
– the treatments (a description of various experimental factors 

manipulated by the experimenter)
– the method used to assign treatments to units (randomization)
– the measures
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Experimental vs. observational study
• The hallmark of the experimental study is that the allocation or assignment 

of individuals is under control of investigator and thus can be randomized. 
Properly executed experimental studies provide the strongest empirical 
evidence.

• In an observational study, the allocation or assignment of factors is not 
under control of investigator. Observational studies do not allow to make 
inferences about causation because the mechanism that assigned 
treatments to units is usually unknown and any difference in responses 
between treatment groups could be due to other hidden factors rather than 
to the treatments. 

• Observational studies (also known as correlation studies, quasi-experiment 
or natural experiments) occur when it is impossible (n fields like astronomy,
geloy, sociology or political science) or unethical (e.g., risk on human 
health) to manipulate some factors. They also occur when one analyze the 
effect of one factor that recorded but not randomized at the moment of the 
experiment.
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External and internal validity

• External validity (generalizability): A study is external valid if its 
conclusions represent the truth for the population to which the 
results will be applied because both the study population and the 
reader’s population are similar enough in important characteristics. 
To insure the external validity of our studies, we need to insure that 
the sample is representative of the population of interest. One way 
of addressing this issue is to select the sample randomly (random 
selection).

• Internal validity: In order to insure the internal validity of our 
studies, we need to has been randomly assign our subjects (once 
selected) to the treatment groups (random assignment). 
Randomization helps to control that no other factor than the 
treatment might explain a possible difference between the groups

Baud-Bovy IIT 2010Introduction to Statistics with R

9

Haphazard Scheme
• Simple random sampling . A sampling procedure that assures that each 

element in the population has an equal chance of being selected is 
referred to as simple random sampling. For example, give a number to all 
elements of the populations and use random number to select the sample. 

• Haphazard Scheme. Haphazard or other unplanned sampling  like taking 
the first N elements as a sample is not random sampling not random 
sampling and can lead to biased results.

• Example. Say we are testing the effectiveness of a voter education program on high school 
seniors. If we take all the volunteers in a class (haphazard selection scheme), expose them to 
the program and then compare their voting behavior against those who didn't participate, our 
results will reflect something other than the effects of the voter education intervention. This is 
because there are, no doubt, qualities about those volunteers that make them different from 
students who do not volunteer. In addition, those differences may very well correlate with 
propensity to vote. In contrast, using a random number generator to select students would 
ensure that those in the treatment and control groups differ solely due to chance.
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Randomization and Experimental designs

• Assigning randomly treatments to experimental units is 
fundamental to avoid the effect of co-found factors (internal 
validity).  Nowadays, randomization is achieved using generating
random numbers. 

• Statistical methods can take advantage of specific features of 
experimental designs such as pairing or blocking to gain efficiency
– Blocking is the arrangement of experimental units into groups (blocks) 

that are similar to one another. Pairing is similar to blocking but involve 
only two groups and two treatments (one treatment is assigned to one 
element of the pair and the second treatment is assigned to the 
second element of the pair). Pairing and blocking reduce known but 
irrelevant sources of variation between units and thus allows greater 
precision in the estimation of the source of variation under study.
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Take-home message

Satistical methods are useless if 
the experiment has not been well 

designed
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Statistical methods
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Statistical methods I

• The choice of a statistical methods depends first on the scientific 
hypothesis that one wants to test. 
– For example, one might be interested by the effect of the experimental 

factors on the central (average) value or on the dispersion (variability) 
of the dependent variable. One may be interested by the strength of 
the relationship between two or more variables, etc  

• The method depends also on the number and type of data 
collected:
– Number of dependent variables => Univariate versus Multivariate 

method
– Categorical (or discrete) data versus continuous data => see later.
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Statistical methods II

• Univariate methods assume that there is only one variable of interest. All 
other variables are used to explain variations of this variable.

– Example of methods: Analysis of variance (ANOVA), simple and multiple 
regression, etc.

• Multivariate methods are used when two or more variables are 
necessary to characterize (e.g., x and y coordinates of the final position of 
a pointing movement, set of EEG, voxels in an MR image). 

– Examples: MANOVA, principal component analysis (PCA), multivariate
discriminant analysis (MDA), etc.  

• Repeated-measures can be analyzed either with (1) with univariate
methods if time, space or any other within-subject factor are viewed as 
independent variables or (2) with multivariate methods if the whole records 
is considered at once.
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Statistical methods III

Independent variable

Continuous Discrete

Dependent 
variable

Continuous regression methods ANOVA and t tests

Discrete logistic regression, 
log-linear models 

Tables of contingency 
(e.g., chi square test)

• Discrete variables as dependent variables are usually counts or 
proportions. Discrete variables as independent variables define groups.

• Distinction is not always strict. For example, ANOVA has been used to 
analyze counts or proportions under some conditions.

• There are more general theoretical frameworks that encompass several 
of these methods. For example, Generalized Linear Models (GLM) 
include linear regression, multiple regression, ANOVA and logistic 
regression as special cases.
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Probability Distributions
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The concept of variable
• A variable is a quantity that can take different values

– A discrete variable is one which may take on only a countable 
number of distinct values such as 0, 1, 2, 3, 4, or blue, green, red, …

– A continuous variable can assume any numerical values  (e.g, tree 
height, body weight). 

• The main characteristics of a variable are its distribution, its 
central value and its dispersion. 

• The term dependent and independent variables terms apply best to
experimental studies where the experimenter controls the 
"independent variable“ in order to assess its effect on the 
"dependent" variable. More generally, the independent variables 
are variables that are used to "explain" the variation of the 
dependent variable.
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Random variable 

• A random variable is a variable with a probability distribution. The 
probability distribution specifies how the values of the random 
variable are distributed (see probability textbook for technical
definition). For example, a gaussian random variable has a gaussian 
distribution, etc.

• A random variable can be either discrete or continuous:
– Discrete random variables have discrete probability distributions
– Continuous random variables have a continuous probability distributions 
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Discrete probability distribution
• A discrete probability distribution specifies 

the probability P(X=xi) for each value xi of a 
discrete random variable X. 

• Example of events that have a discrete 
probability distribution:  

– throw of a coin (2 possible values), 
– throw of  a dice (6 possible values), 
– wining number in the lottery, 
– sum of the throw of two dices, 
– number of heads in N throw of a coin, etc.

• Some properties of discrete probability 
distributions

• Example of discrete probability 
distributions:

–Discrete uniform distribution
–Bernouilli distribution
–Binomial distribution1)(
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Binomial distribution
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• Number of successes over N 
trials given a probability of 
success p

• For small N, the binomial 
distrubition is asymmetric 
when p≠0.5.

• For large N, the distribution 
becomes more symmetric. 

• The mean (expected value) 
and standard deviation of the 
binomial distribution are
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Continuous probability distribution
• The probability density function (PDF) is a 

function f(x) that specifies the density of 
probability for each value x of the variable X. 

• The cumulative density probability 
function (CDF) defines the probability P that 
the random variable X has a value smaller 
than a

• The probability P(a<X<b) that the random 
variable X takes a value between a and b is 
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Continuous probability distribution

• A continuous probability distribution can have almost any 
shape as long as the area under the curve is equal to 
one:

• Exercise. Draw the CDF corresponding to the following 
bimodal probability function:
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The inverse density function

• The inverse density probability 
function (IDF) is the inverse of 
cumulative probability distribution: given 
a probability 0≤P≤1, it will give the value 
a such that P(X≤a).

• The inverse probability distribution is 
used to compute
– interval of confidences,
– critical values in hypothesis testing, 
– the point of subjective equality (PSE) in 

psychophysics, 
– etc.
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Continuous probability distributions

• Main continuous probability distributions:
– The uniform distribution
– The normal distribution
– The Student distribution
– The Chi-square distribution
– The Fisher distribution
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Continuous probability distribution
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# generate 1000 random numbers from a gaussian 
# distribution with mean = 10 and sd=2 
x<-rnorm(1000,mean=10,sd=2)
mean(x)
[1] 10.05171
sd(x)
[1] 2.039555
# make an histogram
hist(x)
# Probability that normally distributed random 
# variable is larger than 0
pnorm(0,mean=0,sd=1) 
[1] 0.5
# critical value u such that the prob of a normally 
# distributed variable Z is smaller than u is 0.95
qnorm(0.95,mean=0,sd=1)
[1] 1.644854

Notes:
• All these functions are vectorialized
• Use set.seed to set to replicate series of random numbers
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The normal distribution
• The PDF of the normal distribution  N(µ,σ)  is:

where  µ is the mean and σ the standard 
deviation .

• The standard normal distribution N(0,1) has a 
mean of 0 and a standard deviation of 1. 

• It is possible to a transform variable X that has 
a normal distribution N(µ,σ) into another 
variable Z that has standard normal distribution. 

• In real case, the theoretical values µ and σ are 
not known but estimated by computing  the 
sample mean m and standard deviation s.
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• The standard normal distribution (Z~N(0,1)) 

• The normal distribution (e.g, X~N(400,100))

• Proof:

The normal distribution

0.99[142.4,657.6]2.576
0.95[204,596]1.96

0.6826[300,500]1

Probability X in 
the interval

Interval          
[µ-uσ,µ+uσ]u

0.99[-2.576,2.576]2.576
0.95[-1.96,1.96]1.96

0.6826[-1,1]1

Probability      
Pr(-u≤Z≤u)

Interval          
[-u,u]u
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Exercise. 
• The function qnorm(u,mean,sd) gives the probability Pr(X<u) for a 

normally distributed variable with mean µ and standard deviation 
sigma.

• Let’s assume that the  variable X is normally distributed with a mean 
µ=15 and a standard deviation sigma=5. Use the function qnorm to 
compute the probability that the variable X takes 

1. a value smaller than 5
2. a value between 10 and 20
3. a value larger than 20

Answers: 1) 0.0228, 2) 0.8413-0.1587=0.6826, 3) 1-0.8413=0.1587

• Use the function pnorm to find out an interval centered on the mean 
such that the variable X has 80% of chance of taking a value inside 
this interval. 
Answer: [8.59,21.41]
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Central Limit Theorem

• The normal distribution plays a very important role of statistics for 
both practical and theoretical reasons.

• The mathematical expression of the normal probability distribution 
has nice properties.

• The Central Limit Theorem states that a sum of random variables 
with finite variance tend approximately normally distributed (i.e. 
following a normal or Gaussian distribution).

• The Central Limit Theorem is one theoretical reason that motivates 
the use of  normal distribution to model noise in statistical models 
(since noise can be arguably viewed as the summed effect of 
many unknown processes)
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Estimation
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Population and Sample

• Population: the entire 
collection of values  in 
which you are interested 
(student’s scores, 
people’s incomes, etc.).

• Sample: A subset of the 
population of interest.

Population

Sample

• The probability distribution of the population is usually unknown. Often,
the shape of the population distribution is assumed (e.g., normal 
distribution) and only the parameters of the assumed distribution are 
unknown. 
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Parameter and Statistic

• A parameter is a value, usually unknown (and which therefore has to 
be estimated), used to represent a certain population characteristic. 
For example, the population mean is a parameter that is often used 
to indicate the average value of a quantity.

• A statistic is a quantity that is calculated from a sample of data. 
– It is possible to draw more than one sample from the same population 

and the value of a statistic will in general vary from sample to sample. 
For example, the average value in a sample is a statistic. The average 
values in more than one sample, drawn from the same population, will 
not necessarily be equal.
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Estimator

• Estimator: a statistic used to estimate the unknown values of a 
parameter of the corresponding population. 

– Within a population, a parameter is a fixed value which does not vary. 
In contrast, the value of the estimator computed from a sample will be 
different for each sample drawn from the population.

– Parameters are often assigned Greek letters (e.g. µ), whereas 
statistics or estimators are assigned Roman letters (e.g. m).

– Example. The average of a sample (or sample mean) m is used to 
give information about the overall mean in the population (or 
theoretical mean µ) from which that sample was drawn.
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Estimators (normal distribution)

• Mean

• Variance

• Standard Deviation

• 2nd formula to compute 
the variance
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See Chapter 3 of 
Bertolini & Nardi 1998
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R functions

sumsum(x)

cor(x,y)

sd(x)

var(x)

mean(x)

function

variance

correlation

standard deviation

mean

description

Examples

# sum elements of a vector
x<-c(2,5,4,2)
sum(x)
[1] 13
# missing values
x<-c(2,5,NA,2)
mean(x,na.rm=TRUE)
[1] 3

# matrix
x<-matrix(1:6,2,3)
x
[,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
colSums(x)
[1]  3  7 11
rowMeans(x)
[1] 3 4

sumrowSums(x)
colSums(x)

colMeans(x)
rowMeans(x)

function

mean

description

Functions operating on vectors

Functions operating on matrices

Notes: 
• Look at the apply function to apply any function to a colum or row of a matrix 
• Look at the tapply and aggregate functions to apply a function to group of observation
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Exercise.

• Compute the mean and standard deviation of the weight of the 24 
babies (see Table 3.4 in Chapter 3 of Bertolini & Nardi, 1998) with both 
formulae.

– Answer: sum=732, average = 30.5, standard deviation = 4.51
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Sampling distribution

• Sampling distribution: probability distribution of a statistic (or of 
an estimator). 

– Statistic or estimator have a distribution since their value depend on 
the sample. 

– The sampling distribution usually depends on the population 
distribution AND on the size of the sample.
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Sampling distribution of the mean

• The sampling distribution of the mean is simply the 
distribution of the means of an infinite number of 
samples drawn under certain specified conditions.

• If the measurements follow a normal distribution 
N(µ,σ), then 

– the mean m of a sample of N measurements will also 
be normally distributed with the mean µ and standard 
deviation σ/√N.

– The score z follows the standard normal distribution.

• Exercise.Create an artificial data set with 1000 
normally distributed random number (mean=50, SD=10). 
Divide the data set into 100 samples of size N=10 and 
compute the mean for each sample. Plot the distribution 
of the parent population and the distribution of the 
means.
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Exercise
• Generate 10000 values from a normal distribution 

with  µ=20 and σ=5 corresponding to 1000 samples 
of size 10:

y<-rnorm(10000,20,5)

• Make an histogram of the the 10000 random values
hist(y)

• Compute the mean and standard deviation of the 
sample

• Compute the mean for each sample (note: You can 
use tapply or aggregate)

• Make an histogram of the 1000 mean values.

• Compute the standard deviation of the means is 
close to the predicted value.
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Confidence  intervals
• When an experiment is repeated several times, some variation in the value of the 

estimated parameter is expected (remember that the sample is randomly 
selected plus there might be random errors in the measures or noise in the 
process under study, etc.).

• The confidence interval is an estimated range of values which is likely to 
include the true (unknown) value of the population parameter. In other words, the 
confidence interval defines a range of values that has a high probability (typically 
95%) of encompassing the true (population) of the parameter. The width of the 
confidence interval gives us some idea about how uncertain we are about the 
unknown parameter.

• The confidence level is the probability (expressed as a percentage) that the true 
but unknown value of the parameter is inside confidence interval.  The 
confidence intervals are usually calculated so that this percentage is 95%, but we 
can produce 90%, 99%, 99.9%, confidence intervals for the unknown parameter. 
If one repeats the experiment several times and estimates the confidence interval 
each time, the confidence level is also the percentage of computed intervals 
that include the true parameter.
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Confidence interval of the sample mean (I)

• For example, let’s compute the mean m of a sample of size and assume that the 
standard deviation σ of the population is known. According to the central limit 
theorem, the sample mean m is normally distributed with an true (unknown) mean µ
and a standard deviation of σm = σ/sqrt(N).

• From a previous slide, we know the probability 

• It can easily be shown that probability that the sample mean m is in the interval [µ-
uσm,µ+uσm] is equal to the probability that the true (unknown) mean is in the interval 
[m-uσm,m+uσm]: 

Therefore, if u = 1.96, 

• The interval [m-1.96σm, m+1.96σm] is the 95% confidence interval for the sample 
mean because there is 95% of chance that the true mean is inside this interval. 
Similarly, [m-2.576σm, m+2.576σm] is the 99% confidence interval, etc. 
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Student distribution

• If one assume that the true value of the mean 
of the distribution is µ, then it can be shown 
that the statistic t follows a distribution of 
Student with N-1 degrees of freedom (m and 
sm are the estimated mean and standard 
deviation of the distribution of the mean, s is 
the estimated standard deviation of the parent 
population).

• The Student distribution is wider when the 
sample size (N) is smaller which corresponds 
to the fact that we have less confidence in the 
estimate s of the standard deviation when the 
sample is small. For large N, student’s 
distribution is undistinguishable from the 
normal distribution
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• Let’s assume a sample of N normally distributed observations. In general,  
the variance (or standard deviation) of the population is unknown. 

Baud-Bovy IIT 2010Introduction to Statistics with R

46

Confidence interval of the sample mean (II)

• In general, the standard deviation σ of the population is unknown. In this case, we 
have seen that the statistic 

where sm = s/sqrt(N) follows a distribution of Student with N-1 degrees of freedom

• From a table of probability for the distribution of student, we can retrieve the value u 
such that   

for example, u=2.023 for N=40 (i.e, N-1=39 degrees of freedom). From the definition 
of t, we also have

• Therefore, the  interval [m-2.023 sm, m+2.023 sm] is the 95% confidence interval for 
the sample mean when the standard deviation of the population is unknown and 
needs to be estimated.
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Exercise. Confidence interval.

For N-1=299, the value of the distribution of Student 
that corresponds to a 95% interval of confidence is 
1.9679.

> m<-mean(stern$rt)
> s<-sd(stern$rt)
> m+qt(c(0.025,0.975),299)*s/sqrt(300)
[1] 58.78175 61.73825
or 
> fit<-lm(rt~1,stern)
> confint(fit,level=0.95)

2.5 %   97.5 %
(Intercept) 58.78175 61.73825

7818.584783.126.60
7512.09679.126.60

300
0106.139679.126.60

9679.19679.1

=−=
×−=

−=

−=−
N
smsm m

7383.614783.126.609679.1 =+=+ msm

• Compute the 95% confidence interval for the RT of the Sternberg dataset.

• Compute the 95% interval of confidence for the weight of the babies 
Answer: [27.5,32.7]


