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Nowadays, several types of brain imaging device are available to

provide images of the functional activity of the cerebral cortex based on

hemodynamic, metabolic, or electromagnetic measurements. However,

static images of brain regions activated during particular tasks do not

convey the information of how these regions communicate with each

other. In this study, advanced methods for the estimation of cortical

connectivity from combined high-resolution electroencephalography

(EEG) and functional magnetic resonance imaging (fMRI) data are

presented. These methods include a subject’s multicompartment head

model (scalp, skull, dura mater, cortex) constructed from individual

magnetic resonance images, multidipole source model, and regularized

linear inverse source estimates of cortical current density. Determi-

nation of the priors in the resolution of the linear inverse problem was

performed with the use of information from the hemodynamic

responses of the cortical areas as revealed by block-designed (strength

of activated voxels) fMRI. We estimate functional cortical connectivity

by computing the directed transfer function (DTF) on the estimated

cortical current density waveforms in regions of interest (ROIs) on the

modeled cortical mantle. The proposed method was able to unveil the

direction of the information flow between the cortical regions of

interest, as it is directional in nature. Furthermore, this method allows

to detect changes in the time course of information flow between

cortical regions in different frequency bands. The reliability of these

techniques was further demonstrated by elaboration of high-resolution
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EEG and fMRI signals collected during visually triggered finger

movements in four healthy subjects. Connectivity patterns estimated

for this task reveal an involvement of right parietal and bilateral

premotor and prefrontal cortical areas. This cortical region involve-

ment resembles that revealed in previous studies where visually

triggered finger movements were analyzed with the use of separate

EEG or fMRI measurements.
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Introduction

Nowadays, there are several types of brain imaging device that

are able to provide images of the functional activity of the cerebral

cortex based on hemodynamic, metabolic, or electromagnetic

measurements. However, static images of brain regions activated

during particular tasks do not convey a sufficient amount of

information with respect to the central issue of how these regions

communicated with each other. The concept of brain connectivity

now plays a central role in neuroscience as a way to understand

one possible dcode T of the functioning brain, as well as the

organized behavior of cortical regions beyond the simple mapping

of their activity (David et al., 2004; Horwitz, 2003; Lee et al.,

2003). Different approaches for the estimate of cortical connectiv-

ity have already been exploited in the literature based on
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hemodynamic or metabolic measurements (Buchel and Friston,

1997), electroencephalography (EEG) scalp potentials (Brovelli et

al., 2002; Gevins et al., 1989; Urbano et al., 1998), and magneto-

encephalographic (MEG) fields (Taniguchi et al., 2000).

Structural equation models have been used to investigate

cortical connectivity in the human brain by means of functional

magnetic resonance imaging (fMRI, Buchel and Friston, 1997;

McIntosh and Gonzalez-Lima, 1994; Schlosser et al., 2003).

However, the temporal dynamics of the hemodynamic process

(on the scale of seconds) makes it problematic to follow the

transient activity of the neural populations that develops in the

order of tens of milliseconds. Indeed, EEG and MEG are known

as useful techniques for the study of brain dynamics due to their

high temporal resolution (milliseconds; Nunez, 1981, 1995).

However, in the EEG case, the different electrical conductivities

of the brain, skull, and scalp markedly blur the EEG potential

distributions and render the localization of the underlying

cortical generators problematic. In last decade, techniques known

as high-resolution EEG had allowed to estimate precisely the

cortical activity from noninvasive EEG measurements (Babiloni

et al., 1997; Gevins, 1989, 1991, 1999; He and Lian, 2002; He

et al., 2002; Nunez, 1995). This body of EEG techniques

includes the use of a large number of scalp electrodes, realistic

models of the head derived from structural magnetic resonance

images (MRIs), and advanced processing methodologies related

to the solution of the linear inverse problem. These method-

ologies allow the estimation of cortical current density from

sensor measurements (Babiloni et al., 2000; Grave de Peralta

Menendez and Gonzalez Andino, 1999; Pascual-Marqui, 1995).

Nowadays, all the connectivity estimations performed on

cerebral electromagnetic signals have been computed between

the signals gathered from the electric or magnetic sensors

(Gevins et al., 1989; Urbano et al., 1998). On the other hand,

the relation between the observed spatial patterns in the sensor

space and those in the source space is complicated by the

spreading of the potential from the cortex to the sensors.

Recently, a methodology being able to compute the coherence

between cortical areas has been introduced, and applications to

MEG data gathered from normal and Parkinson’s disease

patients were provided (Gross et al., 2001, 2003). This

methodology was applied to cortical signals estimated from

MEG measurements, thus improving the spatial details available

with respect to the computation of coherence from signals

derived directly from the sensors. However, in this case, the

direction of the information flow between the cortical areas was

not available due to the nondirectional nature of coherence

computation.

Here, we present a novel computational approach for the

estimation of cortical connectivity based on directed transfer

function (DTF), a technique used to estimate the direction of

information flow between signals gathered from EEG sensors

(Kaminski and Blinowska, 1991; Kaminski et al., 2001). We

applied the DTF approach on the cortical signals estimated

from high-resolution EEG recordings by using realistic head

models and a cortical reconstruction algorithm on an average of

5000 dipoles uniformly disposed along the cortical surface. The

estimation of the cortical activity was obtained by application

of the linear inverse procedure (Grave de Peralta Menendez and

Gonzalez Andino, 1999; Pascual-Marqui, 1995). In this

estimation procedure, several a priori information were used

in order to increase the quality of the cortical current density
estimates. The first a priori information used was the

anatomical constraints by placing the current dipoles orthogo-

nally to the reconstructed cortical surface. An additional

constraint was to force the dipoles to explain the recorded

data with a minimum or a low amount of energy (minimum-

norm solutions; Dale and Sereno, 1993; Hämäläinen and

Ilmoniemi, 1984).

The solution space can be further reduced by using

information derived from hemodynamic measures (i.e., fMRI–

BOLD phenomenon) recorded during the same task. The

rationale of this multimodal approach is that neural activity,

modulating neuronal firing and generating synchronized and

coherent EEG potentials, increases glucose and oxygen demands

(Dale et al., 2000; Liu et al., 1998; Magistretti et al., 1999).

This results in an increase in the local hemodynamic response

that can be measured by fMRI (Grinvald et al., 1986; Puce et

al., 1997). Hence, fMRI responses and cortical sources of EEG

data can be spatially related (Logothetis et al., 2001).

Furthermore, numerical simulations have shown that the use of

fMRI priors increases the quality of the cortical current

estimations (Babiloni et al., 2003; Liu, 2000, 1998). In the

present study, this integrated approach is proposed for the

estimation of cortical connectivity from combined electromag-

netic and hemodynamic measurements in humans, and tested by

analyzing visually paced finger movements executed by four

healthy subjects.
Methods

Subject and experimental design

Four normal right-handed subjects (one male, three females;

mean age 23 F 0.2 years) participated in the study after informed

consent was obtained, according to the Institutional Review

Board at the University of Illinois at Chicago. Subjects were

seated comfortably in an armchair with both arms relaxed and

resting on pillows and were requested to perform fast repetitive

right finger movements that were cued by visual stimuli. Ten to

fifteen blocks of 2-Hz thumb oppositions for right hands were

recorded with each 30-s blocks of finger movement and rest.

During the movement, subjects were instructed to avoid eye

blinks, swallowing, or any movement other than the required

finger movements.

High-resolution EEG recordings

Event-related potential (ERP) data were recorded with 96

electrodes; data were recorded with a left ear reference and

submitted to the artifact removal processing. Six hundred ERP

trials of 600 ms of duration were acquired. A/D sampling rate was

250 Hz. The surface electromyographic (EMG) activity of the

muscle was also collected. The onset of EMG response served as

zero time. All data were visually inspected, and trials containing

artifacts were rejected. We use semiautomatic supervised threshold

criteria for the rejection of trials contaminated by ocular and EMG

artifacts, as described in details elsewhere (Moretti et al., 2003).

After the EEG recording, the electrode positions were digitized

using a three-dimensional localization device with respect to the

anatomic landmarks of the head (nasion and two preauricular

points). The MRIs of each subject’s head were also acquired. These
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images were used for the construction of the individual realistic

geometry head model. The realistic head models are necessary for

the estimation of cortical activity in the appropriate region of

interest (ROIs) by using the linear inverse procedure algorithms

from the scalp-recorded ERP data. The time-varying spectral

values of the estimated cortical activity in the theta (4–7 Hz), alpha

(8–12 Hz), beta (13–30 Hz), and gamma (30–45 Hz) frequency

bands were also computed in each defined ROI. The analysis

period for the potentials time locked to the movement execution

was set from 300 ms before to 300 ms after the EMG trigger (0

time); the ERP time course was divided in two phases relative to

the EMG onset; the first, labeled as bPREQ period, marked the 300

ms before the EMG onset and was intended as a generic

preparation period; the second labeled as bPOSTQ lasted up to

300 ms after the EMG onset and was intended to signal the arrival

of the movement somatosensory feedback. We maintained the

same PRE and POST nomenclature for the signals estimated at the

cortical level.
fMRI data acquisition

All fMRI studies were performed on a 3.0-T scanner (General

Electric Medical Systems, Milwaukee, WI) with BOLD echo

planar imaging (EPI) capability (Advanced NMR Systems Inc.,

Wilmington, MA). Gradient echo EPI, sensitive to the BOLD

effects, was performed using a commercial quadrature birdcage

radio frequency coil.

Subjects’ heads were laid comfortably within the head coil

and firm cushions were used to minimize the head motion. Forty

axial (horizontal) slices with coverage of the whole brain were

acquired. Acquisition parameters used in the functional scans

were TE = 25 ms, TR = 3 s, flip angle = 908; 3 mm slice

thickness with 0 mm gap; 64 � 64 acquisition matrix with a

field of view (FOV) of 20 � 20 cm. The subjects were asked to

perform the fast repetitive finger movement in the following

sequence within one scan session: fixation (30 s), right hand

finger movements (30 s). The sequence was repeated five times

during a single scan session. High-resolution structural images

were also acquired in the axial plane [three-dimensional spoiled

gradient recalled imaging (SPGR)] with 1.9 mm thick contiguous

slices for two subjects; 2 and 1.8 mm thick were used for the

remaining two subjects, respectively.
Head and cortical models

Subjects’ realistic geometry head models reconstructed from

T1-weighted MRIs were employed. The scalp, skull, and dura

mater compartments were segmented from MRIs and triangu-

lated with about 1000 triangles for each surface. The source

model was built with the following procedure: (i) the cortex

compartment was segmented from MRIs and triangulated

obtaining a fine mesh with about 100,000 triangles; (ii) a

coarser mesh was obtained by resampling the fine mesh

previously described to about 5000 triangles. This was done

by preserving the general features of the neocortical envelope,

especially in correspondence of pre- and post-central gyri and

frontal mesial area; (iii) an orthogonal unitary equivalent current

dipole was placed in each node of the triangulated surface, with

direction parallel to the vector sum of the normals to the

surrounding triangles.
Estimation of cortical source current density

The solution of the following linear system

Ax ¼ bþ n ð1Þ

provides an estimation of the dipole source configuration x that

generated the measured EEG potential distribution b. The system

also includes the measurement noise n, supposed normally

distributed.

Also, in Eq. (1), A is the lead field matrix, in which each jth

column describing the potential distribution generated on the scalp

electrodes by the jth unitary dipole. The current density solution

vector x was obtained as (Grave de Peralta Menendez and

Gonzalez Andino, 1999):

x ¼ argmin
x

jj Ax� bjj2M þ k2jj xjj2N
� �

ð2Þ

where M and N are the matrices associated to the metrics of the

data and of the source space, respectively, k is the regularization

parameter, and t x tM represents the M norm of the vector x. The

solution of Eq. (2) is given by the inverse operator G as follows:

x ¼ Gb;G ¼ N�1AVAN�1AV þ kM�1
� ��1 ð3Þ

An optimal regularization of this linear system was obtained by the

L-curve approach (Hansen, 1992a,b). As a metric in the data space

we used the identity matrix, while as a norm in the source space we

used the following metric that takes into account the hemodynamic

information offered by the recorded fMRI data

N�1
� �

ii
¼ g að Þ2jjAdijj�2 ð4Þ

where (N-1)ii is the ith element of the inverse of the diagonal matrix

N and all the other matrix elements Nij are set to 0. The L2 norm of

the ith column of the lead field matrix A is denoted by tA.it. The
g(ai) is a function of the statistically significant percentage

increase of the fMRI signal during the task compared to the rest

state. Such function has values greater than 1 for positive ai, while

takes values lower than 1 for negative ai. In particular, such

function is defined as

g að Þ ¼ max 1þ K � 1ð Þ ai
maxifaig

; 1=K

�
; K z 1; 8a

�
ð5Þ

where the value of the parameter K tunes the strength of the

inclusion of the fMRI constraints in the source space and the

function max(a,b) takes the maximum of the two arguments for

each a. Here, we used the value of K = 10 that resulted from a

previous simulation study, as a value returning optimal

estimation of source current density with fMRI priors for a

large range of SNR values of the gathered EEG signals

(Babiloni et al., 2003).

Regions of interest

Several cortical regions of interest (ROIs) were drawn by two

independent and expert neuroradiologists on the computer-based

cortical reconstruction of the head models obtained for the four

experimental subjects. In particular, the ROIs representing the left

and right primary somatosensory cortex (S1) included the

Brodmann areas (BA) 3, 2, 1, whereas the ROIs representing the

left and right primary motor cortex (MI) included the BA 4. The

ROIs representing the supplementary motor area (SMA) were
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obtained from the cortical voxels belonging to BA 6. We further

separated the proper and anterior SMA indicated with BA 6P and

6A, respectively. Furthermore, ROIs from the right and the left

parietal associative areas, including BA 5 and 7, and the bilateral

occipital area (BA 19), were also considered. In the frontal regions,

BA 46, 8, and 9 were bilaterally selected.

Cortical-estimated waveforms

By using the relations described in Eqs. (1)–(4), at each time

point of the gathered ERP data, an estimate of the signed

magnitude of the dipolar moment for each one of the 5000 cortical

dipoles was obtained. In fact, since the orientation of the dipole

was already defined to be perpendicular to the local cortical surface

of the model, the estimation process returned a scalar rather than a

vector field. In order to obtain the cortical current waveforms for

all the time points of the recorded EEG time series, we used a

unique bquasi-optimalQ regularization k value for all the analyzed

EEG potential distributions. Such quasi-optimal regularization

value was computed as an average of the several k values obtained

by solving the linear inverse problem for a series of EEG potential

distributions. These distributions are characterized by an average

global field power (GFP) with respect to the higher and lower GFP

values obtained during all the recorded waveforms. The instanta-

neous average of the dipole’s signed magnitude belonging to a

particular ROI generates the representative time value of the

cortical activity in that given ROI. By iterating this procedure on

all the time instants of the gathered ERP, the cortical ROI current

density waveforms were obtained, and they could be taken as

representative of the average activity of the ROI during the task

performed by the experimental subjects. These waveforms could

then be subjected to the following processing in order to estimate

the connectivity pattern between ROIs.

Statistical parametric mapping

What is often missing in EEG linear inverse solutions is the

level of reliability of the solution itself. Not all modeled sources

have the same degree of sensitivity to the measurement noise, so

we cannot say whether a source has a high strength because it is the

most probable source of that potential distribution, or just because

that source accounts well for the noise superimposed to the

potential. Even in the ideal case of the absence of noise, some

sources seem more inclined to explain a large set of data, just

because of their geometrical properties (i.e., sources positioned on

a gyrus close to a cortical convexity, rather than deep in a sulcus).

A statistical approach to the problem and a measure of the signal to

noise ratio in the modeled cortical activity are then required. The

level of noise in the EEG linear inverse solutions can be addressed

by estimating the bprojectionQ of the EEG noise n(t) onto the

cortical surface by means of the computed pseudoinverse operator

G; the standard error of the noise on the estimated source strength

x j is given by

hGjdn tð Þi ¼ GjdC Gjd

� �
V ð6Þ

where Gj. is the jth row of the pseudoinverse matrix, C is the EEG

noise covariance matrix (Cij = hni(t), nj(t)i). This allows to

quantitatively assess the ratio between the estimated cortical

activity x and the amount of noise at the cortical level, quantified

through the standard deviation of its estimate (Dale et al., 2000). It
can be demonstrated that under the hypothesis of a normal estimate

for the noise n(t) obtained with more than 50 time points, the

following normally distributed z score estimator can be obtained

for each jth cortical location and for each time point t considered

zj tð Þ ¼
Gj:d b tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GjdC Gjd

� �
V

q ð7Þ

where C is the estimated noise covariance matrix. The uncorrected

threshold for the z score level at 5% is 1.96. Values of z exceeding

such threshold represent levels of estimated cortical activity that

are unlikely due to the chance alone but are related to the task

performed by the experimental subject. However, to avoid the

effects of the increase of the Type I error due to the multiple z tests

performed, the results will be presented after the application of the

Bonferroni correction (Zar, 1984).

Directed transfer function

The directed transfer function (DTF) technique (Kaminski and

Blinowska, 1991) is a full multivariate spectral measure used to

determine directional influences between any given pair of signals

in a multivariate data set. It is computed on a multivariate

autoregressive model (MVAR) that simultaneously models the

whole set of signals. DTF has been demonstrated (Kaminski et al.,

2001) to be based on the concept of Granger causality, according to

which an observed time series s1(n) can be said to cause another

time series s2(n) if the prediction error for s2(n) at the present time

is reduced by the knowledge of s1(n)’s past measurements. This

kind of relation is not reciprocal, thus allowing to determine the

direction of information flow between the time series.

In this study, the DTF technique was then applied to the set of

cortical estimated waveforms S

S ¼ s1 tð Þ; s2 tð Þ; N ; sN tð Þ½ �T ð8Þ

obtained for the N ROIs considered. The following MVAR process

is an adequate description of the data set S:

Xp
k¼0

K kð ÞS t � kð Þ ¼ E tð Þ with K 0ð Þ ¼ 1 ð9Þ

under the condition in which E(t) is a vector of multivariate zero-

mean uncorrelated white noise process. In Eq. (9), K1, K2,. . .,Kp

are the N � N matrices of model coefficients while p is the model

order chosen with the Akaike information criteria (AIC) for MVAR

process (Kaminski et al., 2001). In order to investigate the spectral

properties of the examined process, Eq. (9) is transformed to the

frequency domain:

K fð ÞS fð Þ ¼ E fð Þ ð10Þ

where

K fð Þ ¼
Xp
k¼0

K kð Þe�j2pf Dtk : ð11Þ

Eq. (10) can be then rewritten as

S fð Þ ¼ K�1 fð ÞE fð Þ ¼ H fð ÞE fð Þ: ð12Þ

H( f) is the transfer matrix of the system, whose element Hij

represents the connection between the jth input and the ith output

of the system. With these definitions, the causal influence of the
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cortical waveform estimated in the jth ROI on that estimated in the

ith ROI (the directed transfer function h2
ij( f)) is defined as:

h2ij fð Þ ¼ jHij fð Þj2: ð13Þ

In order to be able to compare the results obtained for cortical

waveforms with different power spectra, a normalization was

performed by dividing each estimated DTF by the squared sums of

all elements of the relevant row, thus obtaining the so-called

normalized DTF (Kaminski and Blinowska, 1991):

c2ij fð Þ ¼ jHij fð Þj2

PN
m¼1

jHim fð Þj2
ð14Þ

cij( f ) expresses the ratio of influence of the cortical waveform

estimated in the jth ROI on the cortical waveform estimated on the

ith ROI with respect to the influence of all the estimated cortical

waveforms. Normalized DTF values are in the interval [0,1] when

the normalization condition

XN
n¼1

c2in fð Þ ¼ 1 ð15Þ

is applied.

Statistical evaluation of connectivity measurements

As DTF functions have a highly nonlinear relation to the

time series data from which they are derived, the distribution of

their estimators is not well established. This makes tests of

significance difficult to perform. A possible solution to this

problem was recently proposed in Kaminski et al. (2001). It

consists of the use of a surrogate data technique (Theiler et al.,

1992), in which one generates an empirical distribution for a

given estimator when interactions between signals are removed.

Significance tests based on this empirical distribution can then

be performed. Specifically, one randomly and independently

shuffles the time series data from each ROI to create a

surrogate data set. A bivariate autoregressive model is then fit

to the shuffled data and the DTF functions are computed from

such model. Carrying out this process many times, each time

performed on an independently shuffled data set, it is possible

to construct an empirical distribution for the DTF functions.

Since the shuffling procedure destroys all the temporal structure

in the data, this empirical distribution gives the variability for

the DTF functions for the null hypothesis case. Using this

distribution, one can then assess the significance of the causal

measures evaluated from the actual data. Without having an

explicit formulation for the shape of this distribution, one can

thus compute an empirical threshold for a given significance

level. A limit of this method is due to the fact that it destroys

interdependency among time series as well as the temporal

structure within a time series. In fact, in the above-mentioned

procedure, samples from all the frequencies are combined into a

single distribution, which is independent from frequency and

gives a single threshold for all the DTF values. In order to

randomize the sequential order while preserving the correlation

structure, we adopted a variation of this method. The surrogate

data set was created by shuffling the trials within each series,

without shuffling single samples within a trial. In this way, we
preserved the spectral properties of the time series, thus being

able to obtain a distribution for each frequency value and a

consequently threshold dependent from frequency. The shuffling

procedure was performed for 1000 times and the statistical

significance level was set to 0.01%.

Connectivity inflow–outflow relationships

The connectivity patterns in the different frequency bands

between the different cortical regions were summarized by using

appropriate indexes representing the total flow from and toward the

selected cortical area. In particular, we defined the total inflow in a

particular cortical region as the sum of the statistically significant

connections (with their values) from all the other cortical regions

toward the selected area. The total inflow for each ROI is

represented by a sphere centered on the cortical region, whose

radius is linearly related to the magnitude of all the incoming

statistically significant links from the other regions. Such

information is also coded through a color scale. Such information

depicts the ROI as target of functional connections from the other

ROIs. Same conventions are used to represent the total outflow

from a cortical region toward the others, generated by the sum of

all the statistical significant links obtained by application of the

DTF to the cortical waveforms (with their values).
Results

A selection of the gathered ERPs related to the visually paced

right finger tapping task performed by Subject #1 is shown on the

upper panel of Fig. 1. These waveforms are relative to the signals

gathered from the standard electrode leads of the augmented 10–20

international system that are represented on the realistic geometry

scalp reconstruction of the subject (center of the figure). The

waveforms shown resulted from the average of the artifact-free trials

aligned on the EMG onset. Hemodynamic fMRI data collected from

all the subjects served as a priori information to constrain the

solution of the linear inverse problem, in the way described above

by Eqs. (1)–(5). Using the linear inverse procedure, the estimation

of the current density waveforms for the selected ROIs was then

obtained. In order to define the statistical significance of these

cortical estimated waveforms, the z score transformation was

applied following Eqs. (6) and (7). The estimated z score

waveforms are represented for some selected ROIs in the bottom

panel of Fig. 1 (Subject #1). Note that the z score scale of the

waveforms ranges from 0 (the baseline) to 10; this latter value

corresponding to a level of statistical significance equal to P b 10�7.

The use of a high values of z score is appropriate, since the

uncorrected level for statistical significance of the estimated

waveforms is only equal to 1.96 (P b 5 � 10�2). However, we

used an increased level of statistical significance to discuss the

obtained data (z = 5, P b 10�5) in order to avoid the risks of the

so-called alpha inflation (Abt, 1983). This alpha inflation is

related to the increase of the probability to get significant results

by chance alone, due to the execution of multiple univariate tests.

Cortical activity was significantly different from baseline in the

left ROIs representing parietal (BA 5), premotor (BA 6A),

sensorimotor (BA 3, 2, 1, BA 4), and prefrontal (BA 8 and BA 9)

cortical areas, whereas a similar statistical engage has been

observed on the right hemisphere only for the ROIs correspond-

ing to premotor (BA 6A) and prefrontal (BA 8) cortical areas.



Fig. 1. (Top panel) Selection of the ERPs gathered during the visually paced right finger tapping performed by Subject #1. The ERP waveforms are relative to

the signals gathered from the standard electrode leads of the augmented 10–20 international system, represented on the realistic scalp reconstruction of the

subject at the center of the figure. The waveforms are relative to the average of the artifact-free trials, and the gray vertical bar indicates the onset of the EMG

trigger, located 300 ms from the beginning of the ERP waveform. (Bottom panel) Estimates of the statistical significance of the cortical activity in selected

ROIs depicted on the realistic representation of the cortex in Subject #1. Such estimation was performed first by estimating the cortical activity with the use of

the a priori information from the hemodynamic measurements during the solution of the linear inverse problem. Then, in order to obtain the statistical

significance of cortical estimated waveforms, the z score transformation was first applied and then represented. Note the z score scale of the waveforms,

ranging from 0 (the baseline) to 10; this latter value corresponding to a level of statistical significance equal to P b 10�7. The figure at the center shows the

different ROIs drawn on different colors on the cortical surface reconstruction of Subject #1.
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Connectivity analysis

The task-related pattern of cortical connectivity was obtained

by applying the DTF methodology to the cortical current

density waveforms estimated in each particular ROI depicted on

the realistic geometry head model. The connectivity patterns

between the ROIs have been represented by arrows pointing

from one cortical area (bthe sourceQ) toward another one (bthe
targetQ). The color and size of the arrows code the strength level

of the functional connectivity observed between the source and
the target ROI. The labels on the cortical reconstruction of the

brain indicate the names of the ROIs involved in the estimated

connectivity pattern. Furthermore, we summarized the behavior

of a ROI as a sink for the information flow from the other

ROIs by adding all the value of the links reaching a particular

ROI from all the others. The information is represented with the

size and the color of a sphere, centered on the particular ROI

analyzed; the larger the sphere, the higher the value of inflow

or outflow of a given ROI. Fig. 2 shows the connectivity

patterns estimated in the theta band during the POST time



Fig. 2. (Top left) Connectivity patterns estimated in a subject during the performance of finger tapping movement, after EMG onset. Each pattern is represented

with arrows moving from one cortical area toward another. The color and size of the arrows code the level of strength of the functional connectivity observed

between ROIs. The labels indicate the names of the ROIs employed. (Bottom right) Outflow patterns in all the ROIs obtained for the same connectivity pattern

depicted in top left. The figure summarizes in red hues the behavior of a ROI in terms of reception of information flow from other ROIs by adding all the value

of the links arriving on the particular ROI from all the others. The information is represented with the size and the color of a sphere, centered on the particular

ROI analyzed. The larger the sphere, the higher the value of inflow or outflow for any given ROI. The blue hues code the outflow of information from a single

ROI toward all the others.

Table 1

Table shows the optimal order determined with the Akaike information

criteria (AIC) for each subject recorded in this study

Subjects Model order PRE

(�300 to 0 ms)

Model order POST

(0 to 300 ms)

1 6 6

2 6 7

3 7 6

4 6 7

Two different model were fitted on the acquired data. The column Model

order PRE shows the optimal order obtained in the time period from �300

to the EMG onset (PRE), labeled as instant 0. The second column shows the

optimal order obtained in the time period from 0 to 300 ms after EMG onset

(POST).
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period for Subject #1. On the left panel, the connectivity pattern

estimated by means of the DTF is represented by the arrows

pointing from the source to the target ROI. The right panel

shows the information flow outside (blue hues) and inside (red

hues) each ROI with the aid of the colored spheres. The blue

hues and the size of the spheres code the total outflow from

each ROI, while the red hues and sizes code the total inflow in

each ROI.

Computation of the connectivity pattern with the DTF is based

on the use of the MVAR model on the estimated cortical

waveforms. This MVAR model relies on the determination of an

appropriate model order (the p parameter in Eq. (9)) for the ROI

waveforms. The optimal order had to be determined for each

subject and for each of the time segment considered in the

estimated cortical waveforms (PRE and POST interval). The

Akaike information criteria (AIC) procedure was used, and the

estimation of the model order for each subject and for each time

interval analyzed is presented in Table 1. The AIC as a function of

model order stayed flat from 5 to 11, with a minimum between 6

and 7 in all the subjects. However, it may be argued that the

connectivity pattern estimation via the DTF could be sensitive to

the use of different values of the model order. Therefore, we aimed

to investigate if the use of a wrong model order could cause great

changes in the connectivity and information flow patterns of the

EEG data. In order to test this issue, we performed a raw sensitivity

analysis with different model orders, ranging from 5 to 9, on the

estimated connectivity and outflow patterns of the EEG data

gathered from Subject #1. The obtained results relative to the theta

frequency band and the POST time period are presented in Fig. 3.

Such figure suggests a substantial equivalence of the estimated
connectivity patterns computed with the different model orders.

Similar results were found for the other frequency bands and the

PRE time period (data not shown).

Connectivity estimations on the cortical waveforms obtained by

multimodal integration of EEG and fMRI recordings were

performed in each of the subjects, after computation of the

statistical threshold, via the shuffling procedure described pre-

viously. Fig. 4 shows the cortical connectivity patterns obtained for

all the subjects analyzed during both the PRE (first column) and

POST (second column) time periods and relative to the alpha

frequency band. All the represented cortical connections were

statistically significant at P b 0.01 level. Note that the connectivity

patterns relative to the alpha frequency and to the PRE period

mainly involve the parietal and sensorimotor ROIs that are

functionally connected with the bilateral premotor cortical ROIs



Fig. 3. (Left column) Connectivity patterns related to the different model

orders used for the MVAR of the finger tapping data, starting from the order

5 (top) to the order 9 (low). (Right column) Inflow (red hues) and outflow

(blue hues) patterns related to the same different model orders for the

MVAR. Note the similarity of the computed connectivity patterns, which is

rather independent from the correct estimation of the order for the MVAR

process.

Fig. 4. Connectivity patterns estimated in the alpha frequency band by

application of DTF methodology on the estimated cortical waveforms in the

four subjects analyzed. The connectivity estimates are relative to the period

before EMG onset (PRE label, first column) and from the EMG to the end

of recordings (POST label, second column). After preparation and

beginning of finger movements (POST period), the connectivity patterns

slightly changed in all the subjects examined.
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and with both the prefrontal ROIs. The stronger functional

connections are relative to the link between the premotor and

prefrontal areas of both cerebral hemispheres. After the preparation

and the beginning of the finger movement (POST period), the

connectivity patterns slightly changed in all the subjects examined.

As for the beta frequency band, the connectivity patterns for the
overall subjects did not differ from those obtained for the alpha

band (data not shown). Conversely, the connectivity patterns in the

gamma frequency band displayed an involvement of the right

parietal (BA 5), motor (BA 4), and premotor cortical areas (BA 6)

as a source of links spreading toward the left sensorimotor and

parietal cortical areas in the analyzed subjects (Fig. 5).

Fig. 6 shows the inflow and outflow patterns computed for the

alpha frequency band in all the considered ROIs and obtained for

the PRE and POST periods of all subjects. The ROIs, which are

very active as sink (i.e., the target of the information flow from other

ROIs), result generally stable with respect to the PRE and POST

periods. Indeed, the major sink ROIs are located in the parietoocci-

pital areas (including the bilateral BA 19 and 7) and in the premotor

and the prefrontal areas (including the bilateral BA 8, 9, and 6) for

all the examined subjects. The most active ROIs functioning as a

source during the same time periods are generally located in the

right parietal (BA 5) and in the primary motor area (BA 4). Similar



Fig. 5. Connectivity patterns estimated for the gamma frequency band in all

subjects. Same conventions applied as in Fig. 4.
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to what was observed for cortical connectivity patterns, the inflow

and the outflow patterns relative to the beta frequency bands were

resembling those presented for the alpha band. As shown in Fig. 7,

we found that in the gamma band range the situation was slightly

different: the main targets of the functional connections spreading

from the right parietal and premotor cortical areas (see the outflow

pattern on the third and fourth column of the figure) are the occipital

as well as the prefrontal cortical areas of both hemispheres (BA 19,

BA 8, 9, and 46).
Discussion

Methodological considerations

We have presented a body of techniques to unveil changes in

functional connectivity between cortical ROIs, depicted on realistic

geometry models of the head volume conductor, based on high-

resolution EEG data. The connectivity estimations have been

performed on ROIs depicted along Brodman areas (BAs) identified

on individual cortical model. This strategy uses a priori informa-
tion according to the role of the BAs in the brain functions. The

presented technique could also be applied by drawing the ROIs

around the cortical estimated peaks of the power spectra activity in

the different frequency bands with a post hoc procedure (Gross et

al., 2001). Here, we have rather employed the ROIs depicted on the

base of the BAs to allow comparison of the functional connectivity

patterns elicited by the same experimental behavior across subjects.

The present analysis was based on a cortical source model,

namely the source space where the cortical activity generates was

identified by estimating the inverse operator G relative to the

realistic geometry of the cortical surface of each subject. Hence, it

may be argued that since only cortical sources are modeled, if a

deep source is active then the source reconstruction (and likely the

connectivity estimates) could fail. In this context, it should be

taken into account a widely accepted notion that the main sources

for the scalp-recorded EEG signals derive from the cortex, while

the thalamus and the basal ganglia can hardly produce appreciable

contribution to the scalp EEG (Nunez, 1995). However, even if a

subcortical neural source contributed markedly to scalp-recorded

EEG, this deep contribution would be distributed over the source

space lying on the cortical surface by the employed model. This

phenomenon would result in an increase of the low spatial

frequency component in the recorded EEG. If the hypothetical

subcortical activation would not be modulated by the performed

task, then the computed connectivity patterns will remain

unchanged with respect to those not generated by the subcortical

sources. This is because the connectivity patterns are statistically

compared with respect to the nonsignificant; therefore, given the

subcortical activity as not task dependent, its hypothesized

contribution will be canceled. Finally, if the subcortical sources

contributed effectively to the scalp EEG and were modulated by

the performed task, then it would be produced a generalized

unspecific increase of correlation between all the ROIs analyzed.

There is a large consensus about the need and usefulness of the

multimodal integration of metabolic, neurovascular, and electro-

physiological data of neuronal activation also in order to under-

stand their complex interactions in the healthy and diseased brain

(see Rossini et al., 2004). The findings reported in the literature

(reviewed in Dale and Halgren, 2001) suggest the possibility to

improve the spatial details of the estimated neural sources by

performing a multimodal integration of EEG or MEG with fMRI.

In a recent simulation study, it was found that the use of fMRI

priors in the estimation of cortical activity enhances the efficacy of

the cortical current density estimation for those ROIs in which

fMRI hotspots are located while it does not decrease the cortical

current density estimation efficacy for the ROIs with no fMRI

hotspots present (Babiloni et al., 2003). In the present study, we

have then employed the EEG and fMRI multimodal integration to

improve cortical current density estimations in the analyzed ROIs.

It is noteworthy that the formulation adopted here to insert the

fMRI priors into the estimation of the cortical current density (Eq.

(5)) is adequate to support increase as well as decrease of the

hemodynamic blood flow underlying the task with respect to the

rest period. Indeed, a fMRI prior relative to an increase of the

blood flow during the task will cause an increase of the probability

for the dipolar source (where the increase is localized) to actively

participate to the estimated solution. This is because the cost for its

inclusion in the solution decreases, as stated by Eq. (5). The same

line of reasoning is applicable for the inclusion of decreased values

of fMRI signals with respect to the rest state (negative ai). In this

latter case, the cost for the inclusion of the dipolar source will



Fig. 6. Figure shows the inflow and outflow patterns obtained for the alpha frequency band from all the ROIs during the PRE and POST periods for all the

analyzed subjects. Same conventions of Fig. 2 are applied. Each row is relative to the results obtained in each subject analyzed. The first two columns from left

are relative to the PRE time period for the inflow and outflow estimations, while the third and the fourth columns are relative to the POST time period.
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increase up to a maximum equal to the inverse of the tuning factor

K, and the dipole will not likely be included in the electromagnetic

inverse solution estimated by Eq. (3).

Although the locations of neural population generating

oscillatory activity have been already estimated with different

technologies (Pfurtscheller and Lopes da Silva, 1999; Salmelin

et al., 1995; Tesche and Karhu, 2000), the present study

addresses the computation of the brain connectivity from the

estimated cortical activity. Connectivity measurements among

cortical sites have been presented by using MEG recordings

(Gross et al., 2001, 2003). The methodology reported in those

cases, however, did not allow to immediately recognize the

direction of the information flow due to the nondirectional

properties of the estimated coherence. In the present study, we

have applied a methodology (DTF) already known for the

assessment of information flows between scalp electrodes

(Kaminski and Blinowska, 1991, Kaminski et al., 2001) to
cortical signals estimated by means of realistic geometry head

models and high-resolution EEG recordings.

Additional connectivity estimation techniques are available in

neuroscience, besides those discussed above. For instance, the

mutual information technique (Inouye et al., 2000) and the cross

covariance methodologies (Gevins et al., 1989; Urbano et al., 1998)

are able to reveal direct flow of information between one or more

scalp electrodes toward another one(s) in the time domain. However,

important information in the EEG signals is often coded in the

frequency and not in the time domain (reviewed in Pfurtscheller and

da Silva, 1999). The DTF is a technique in the frequency domain that

has been demonstrated (Kaminski et al., 2001) to rely on the key

concept of Granger causality between time series (Granger, 1969):

an observed time series x(n) causes another time series y(n) if

knowledge of x(n)’s past significantly improves prediction of y(n);

this relation between time series is not reciprocal, that is, x(n) may

cause y(n) without y(n) necessarily causing x(n). This lack of



Fig. 7. Inflow and outflow patterns computed for the gamma frequency band. Same conventions as in Fig. 6.
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reciprocity permits to evaluate the direction of information flow

between structures. With respect to the use of another popular

method for the study of cortical connectivity by using hemodynamic

measurements, like the Structural EquationModeling, the DTF does

not require the use of a specific cortical connectivity model to be

tested. The capability of the DTF methodology to recover

connectivity patterns has been already explored in the literature

(Kaminski et al., 2001). In addition, a simulation study reported

elsewhere has demonstrated as the connectivity estimation per-

formed by DTF is rather robust with respect to systematic variation

of signal to noise ratio as well as the length of the recording data

(Astolfi et al., 2004). In particular, it has been noted that at least a

SNR equals 3 and a LENGTH of the measured cortical data of 45 s

are necessary to decrease significantly the errors in the connectivity

estimates. Both criteria have been fulfilled by the present EEG

recordings.

Our results suggest that the connectivity estimates are quite

robust with respect to the optimal choice of the MVARmodel order.

In fact, Fig. 2 shows that departures from the optimal model order do
not change dramatically the connectivity as well as the outflow

pattern of the analyzed data. Substantially, the same information is

conveyed by the choice of model order between 5 and 9, although

the AIC criterion returned a specifically optimal model order

described in Table 1. Moreover, this identity in the connectivity

pattern estimated with the different model orders also holds for the

other frequency bands examined. The optimal values of the MVAR

order range from 6 to 7 in the population analyzed. These values are

comparable to the 5 or 6 orders found in EEGmodels during sleep or

isometric muscular contractions (Kaminski et al., 2001; Mima et al.,

2001).

It might be argued that the use of constant coefficients for the

MVAR model for the connectivity estimates is only justified for the

modeling of a stationary process. Here, this issue is addressed by

performing the MVAR modeling of the estimated cortical data in

two main time segments related to the time period before and after

the EMG onset (PRE and POST period). Indeed, it is well known

as the cortical information processing substantially differs between

movement preparatory phase (PRE period), and the phase when the
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somatic feedback from the finger joints is received by the cortex, in

the POST period. This difference in the logical information

processed by the brain during movement preparation and execution

could be reflected by possible variations of the statistical properties

of the estimated cortical waveforms. These variations could be

viewed as a nonstationarity of the cortical waveforms along the

entire time course of the acquired data. We have explicitly tackled

this issue by modeling and analyzing separately the data acquired

before and after the EMG onset (the PRE and POST time period).

We observed minimal changes of the connectivity patterns during

the PRE and POST period, as well as a substantial coincidence of

the estimated model order was observed for all the subjects in the

two time periods, as shown in Table 1.

Application to the real EEG/fMRI data

The described technique has been applied to the ERP data

gathered during visually guided finger tapping movements. The

main findings obtained with the multimodal integration of ERP and

fMRI data are related to the activation of a network involving the

right frontoparietal cortical structures. The flow of the connections

moves from the parietal and premotor areas toward the right and left

prefrontal areas. These results have also been corroborated by the

inflow–outflow analysis, indicating how the ROIs located at the

parietal (BA 5) and premotor areas (BA 6) could be the source of an

activity that spreads and reaches virtually all the other ROIs

considered, from the occipital (BA 19) to the prefrontal (BA 9,

46) areas of both hemispheres. No remarkable variations of the

inflow–outflow characteristics are noted in both PRE and POST

time periods; rather, the same connectivity patterns underlying these

two time phases increase or decrease just the strength of the

connections.

Beside the highlight on the technology potential, the physio-

logical features of the reported findings are consistent with and

further integrate those already known in the literature on finger

tapping movements, expressed by both neuroelectric and hemody-

namic measurements. In a previous fMRI study, it has been found

that the right-sided dorsal premotor cortex was preferentially

activated during finger tapping movements together with the

bilateral visual cortex, where the visual pacing stimulus was

processed (J7ncke et al., 2000). In addition, the same study described

a significant activation of the ventral premotor cortex in conjunction

with the parietal cortices. These findings yielded to the hypothesis

that the bilateral visual activation could trigger the timing of finger

movements by transferring the sensory pacing codes via the left and

right ddorsalT pathways to the prefrontal cortex, where stimulus

response are matched. Of special interest is our observation of the

involvement of the occipital area (BA 19) that received information

from the ROIs more directly involved in the motor task processing,

namely those depicting the premotor and parietal areas. A network

including the primary sensorimotor as well as the supplementary

motor areas is involved in the execution of visually triggered finger

tapping movements, as previously demonstrated by fMRI and PET

technologies (Salmelin et al., 1995; Volkmann et al., 1996). These

latter studies also underlined the role of cerebellum, a role which was

not possible to investigate with our noninvasive electrophysiological

techniques, due to the large generation of closed potential fields by

the cerebellum’s stellate cells that are not detectable by the scalp

electrodes. Gerloff et al. (1998) have further underlined the role of

the primary sensorimotor and supplementary motor areas in the

processing of movement execution based on ERP measurements
from scalp electrodes and the assessment of connectivity with the

nondirectional coherence methods.

The connectivity patterns of the premotor and prefrontal ROIs

reported here are in agreement with earlier electromagnetic findings,

suggesting that the dorsolateral and the ventral premotor cortices are

the specific candidate for movement execution guided by sensory

information as opposed to movements carried out with no sensory

control (Classen et al., 1998; Rothwell et al., 1991; Sekihara and

Scholz, 1996). Finally, the present activity noted in the parietal area

(BA 5) could reflect the role that such area has in the somatosensory-

motor integration formotor actions. Indeed, it has been hypothesized

that such area could be regarded as a higher-order somatosensory

zone devoted to the analysis of proprioceptive information from

joints for the appropriate motor control (Rizzolatti et al., 1998).

In conclusion, we have presented here an integrated approach to

estimate brain cortical connectivity information by using non-

invasive methodologies involving the multimodal integration of

electrophysiological and hemodynamic measurements. These meth-

odologies enable us to detect the level of statistical significance of

the estimated cortical activations in the selected ROIs and to follow

the time-varying pattern of connectivity eventually developing

during simple motor tasks in humans. This body of methodologies

can be suitable for the analysis of simple as well as complex

movements or cognitive tasks in humans.
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