Motion Planning in Dynamic Environments using
Velocity Obstacles

Paolo Fiorini* and Zvi Shillert

* Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109 USA

f Department of Mechanical, Nuclear and Aerospace Engineering
University of California, Los Angeles
Los Angeles, CA 90024 USA

Abstract

This paper presents a method for robot motion planning in dynamic environments.
It consists of selecting avoidance maneuvers to avoid static and moving obstacles in the
velocity space, based on the current positions and velocities of the robot and obstacles. It
is a first-order method since it does not integrate velocities to yield positions as functions
of time.

The avoidance maneuvers are generated by selecting robot velocities outside of the
Velocity Obstacles, which represent the set of robot velocities that would result in a
collision with a given obstacle that moves at a given velocity, at some future time. To
ensure that the avoidance maneuver is dynamically feasible, the set of avoidance velocities
is intersected with the set of admissible velocities, defined by the robot’s acceleration
constraints. Computing new avoidance maneuvers at regular time intervals accounts for
general obstacle trajectories.

The trajectory from start to goal is computed by searching a tree of feasible avoidance
maneuvers, computed at discrete time intervals. An exhaustive search of the tree yields
near-optimal trajectories that either minimize distance or motion time. A heuristic search
of the tree is applicable to on-line planning. The method is demonstrated for point
and disk robots among static and moving obstacles, and for an automated vehicle in an
Intelligent Vehicle Highway System scenario.

1. Introduction

This paper addresses the problem of motion planning in dynamic environments, such
as robot manipulators avoiding moving obstacles, and intelligent vehicles negotiating free-
way traffic.

Motion planning in dynamic environments is a difficult problem, since it requires
planning in the state-space, i.e. simultaneously solving the path planning and the velocity
planning problems. Path planning is a kinematic problem, involving the computation of
a collision-free path from start to goal, whereas velocity planning is inherently a dynamic
problem, requiring the consideration of robot dynamics and actuator constraints. It was
shown that dynamic motion planning for a point in the plane, with bounded velocity and
arbitrary many obstacles, is intractable (NP-hard) (Canny and Reif, 1987). In addition
to the computational difficulty, this problem is not guaranteed to have a solution due to
the uncertain nature of the environment, since a solution computed at time tg may be
infeasible at a later time (Sanborn and Hendler, 1988).

Motion planning in dynamic environments was originally addressed by adding the
time dimension to the robot’s configuration space, assuming bounded velocities and
known trajectories of the obstacles (Reif and Sharir, 1985; Erdmann and Lozano-Perez,
1987; Fujimura and Samet, 1989a). Reif and Sharir (1985) solved the planar problem
for a polygonal robot among many moving polygonal obstacles, by searching a visibility
graph in the configuration-time space. Erdmann and Lozano-Pérez (1987) discretized the
configuration-time space to a sequence of slices of the configuration space at successive
time intervals. This method essentially solves the static planning problem at every slice
and joins adjacent solutions. Fujimura and Samet (1989a) used a cell decomposition to
represent the configuration-time space, and joined empty cells to connect start to goal.

Another approach to dynamic motion planning is to decompose the problem into
smaller sub-problems: path planning and velocity planning. This method first computes
a feasible path among the static obstacles. The velocity along the path is then selected to
avoid the moving obstacles (Kant and Zucker, 1986; Lee and Lee, 1987; Fraichard, 1993;
Fraichard and Laugier, 1993; Fujimura and Samet, 1993; Fujimura, 1995). Kant and
Zucker (1986) selected both path and velocity profile using a visibility graph approach. Lee
and Lee (1987) developed independently a similar approach for two cooperating robots,
and compared the effects of delay and velocity reduction on motion time. Fraichard
(1993) considered acceleration bounds, and used a search in a state-time space (s, $,1) to
compute the velocity profile yielding a minimum-time trajectory. Fraichard and Laugier
(1993) considered adjacent paths that could be reached from the nominal path when the
nominal path becomes blocked by a moving obstacle. Fujimura (1995) considered the case
of a robot moving on a fixed time-dependent network, whose nodes could be temporarily
occluded by moving obstacles.

A different approach consists of generating the accessibility graph of the environment,
which is an extension of the visibility graph (Fujimura and Samet, 1989b; Fujimura and
Samet, 1990). Fujimura and Samet (1989b) defined it as the locus of points on the
obstacles which are reachable by the robot moving at maximum speed. These points
form the collision front, and can be linked together to construct a path from start to
goal. The accessibility graph has the property that, if the robot moves faster than the
obstacles, the path computed by searching the graph is time-minimal. This concept was
extended in (Fujimura, 1994) to the case of slowly moving robots and transient obstacles,
i.e. obstacles that could appear and disappear in the environment.

On-line planning in dynamic environments has mostly emphasized reasoning and
decision making, with little concern to robot dynamics. In (Sanborn and Hendler, 1988),

reaction rules were developed for a robot moving in a Traffic World. The moving robot
reacts to the environment by predicting the space-time intervals in which belligerent and
apathetic objects would intersect its specified path. This approach considers the physical
properties of the environment, but neglects the physical limitations of the moving robot.
Bounds on the robot’s velocity were added in (Tsubouchi and Arimoto, 1994), where
a Cartesian-time representation was used to avoid the volumes swept by the moving
obstacles. A problem related to on-line avoidance of many obstacles, namely predicting
and ordering future collisions according to time to collision, was addressed in (Hayward
et al., 1995).

Common to the previous work is the reliance on position information to test for
collision between the robot and the moving obstacles. For example, the configuration-
time space (Erdmann and Lozano-Perez, 1987; Fujimura and Samet, 1989a; Reif and
Sharir, 1994) is essentially a time evolution of the configuration-space obstacles. The path-
velocity decomposition (Kant and Zucker, 1986; Fujimura and Samet, 1989b; Fraichard
and Laugier, 1993) is based on testing for collisions at various positions along the path.
Similarly, the collision front (Fujimura and Samet, 1989b; Fujimura and Samet, 1990) is
generated by integrating velocities to produce colliding positions between the robot and
the obstacles. Thus, all current algorithms can be described as zero order methods, since
they rely on position information to determine potential collisions.

In this paper, we present a first order method to compute the trajectories of a robot
moving in a time-varying environment, using velocity information to directly determine
potential collisions. This method utilizes the concept of Velocity Obstacle (VO) (Fiorini
and Shiller, 1993; Fiorini, 1995), which maps the dynamic environment into the robot
velocity space. The velocity obstacle is a first-order approximation of the robot’s veloc-
ities that would cause a collision with an obstacle at some future time, within a given
time horizon. With this representation, an avoidance maneuver can be computed simply
by selecting velocities outside of the velocity obstacle. The maneuver is ensured to be
dynamically feasible by selecting velocities that satisfy the actuator constraints, mapped
into velocity constraints using forward dynamics.

A trajectory consists of a sequence of such avoidance maneuvers, computed by a
global search over a tree of avoidance maneuvers, generated at discrete time intervals.
For on-line applications, the tree is pruned using a heuristic search, designed to achieve
a prioritized set of objectives, such as avoiding collisions, reaching the goal, maximizing
speed, or achieving trajectories with desired topologies. Both methods were previously
implemented in computer simulations for an autonomous vehicle negotiating freeway traf-
fic (Fiorini, 1995; Fiorini and Shiller, 1995), for a robotic manipulator avoiding moving
obstacles (Fiorini and Shiller, 1996; Fiorini and Shiller, 1997), and extended to a 3-D en-
vironment (Fiorini and Shiller, 1993). The analysis and examples presented in this paper
focus on a point robot among static and moving obstacles, and on on automated vehicle
applications.

This paper is organized as follows. Section 2 presents the velocity obstacle. Section 3
describes the structure of the avoidance maneuvers. The generation of complete trajecto-
ries is described in Section 4 using both global and heuristic search methods. Examples
of trajectories for a point robot avoiding static and moving obstacles, and for a circular
robot navigating highway traffic, are presented in Section 5.

Nelocity of B

VB

Va

W Velocity of A

Figure 1: The robot and a moving obstacle.

2. The Velocity Obstacle

In this section, we present the concept of Velocity Obstacle (VO) for a single and
multiple obstacles. For simplicity, we restrict our analysis to circular robots and obstacles,
thus considering a planar problem with no rotations. This is not a severe limitation since
general polygons can be represented by a number of circles (O'Rourke and Badler, 1979;
Featherstone, 1990). We also assume that the obstacles move along arbitrary trajectories,
and that their instantaneous state (position and velocity) is either known or measurable.

Consider the two two circular objects, A and B, shown in Figure 1 at time ¢y, with
velocities v4 and vg. Let circle A represent the robot, and circle B represent the obstacle.
To compute the VO, we first map B into the Configuration Space of A, by reducing A to
the point A and enlarging B by the radius of A to B. The state of each moving object is
represented by its position and a velocity vector attached to its center.

We define the Collision Cone, CCy g, as the set of colliding relative velocities between
A and B: ~

CCA,B:{VA,B |/\A7BﬂB7£®} <1)
where v4 p is the relative velocity of A with respect to E, vap =Vy— Vg, and A4 p is
the line of v4 p.

This cone is the planar sector with apex in A, bounded by the two tangents A; and
A from A to B, as shown in Figure 2. Any relative velocity that lies between the two
tangents to f?, Ar and A, will cause a collision between A and B. Clearly, any relative
velocity outside C'C4 p is guaranteed to be collision-free, provided that the obstacle B
maintains its current shape and speed.

The collision cone is specific to a particular pair of robot/obstacle. To consider
multiple obstacles, it is useful to establish an equivalent condition on the absolute velocities
of A. This is done simply by adding the velocity of B, vg, to each velocity in CC, 5 or,

<t

A
A

Figure 2: The Relative Velocity v4 g and the Collision Cone CCy p.

equivalently, by translating the collision cone C'C'4 p by vp, as shown in Figure 3. The
Velocity Obstacle VO is then defined as:

VO =CCupo® vy (2)

Figure 3: The velocity obstacle VOg.

D

Figure 4: Velocity obstacles for B; and Bs.

where & is the Minkowski vector sum operator.
The VO partitions the absolute velocities of A into avoiding and colliding velocities.
Selecting v 4 outside of VO would avoid collision with B, or:

ADNBE) =0 if valt) ¢ VOQ) (3)

Velocities on the boundaries of VO would result in A grazing B. Note that the VO of a
stationary obstacle is identical to its relative velocity cone, since then vp = 0.
To avoid multiple obstacles, we consider the union of the individual velocity obstacles:

VO =U",VOs (4)

where m is the number of obstacles. The avoidance velocities, then, consist of those
velocities v 4, that are outside all the VO’s, as shown in Figure 4.

In the case of many obstacles, it may be useful to prioritize the obstacles so that
those with imminent collision will take precedence over those with long time to collision.
Furthermore, since the VO is based on a linear approximation of the obstacle’s trajectory,
using it to predict remote collisions may be inaccurate, if the obstacle does not move
along a straight line. We call imminent a collision between the robot and an obstacle if it
occurs at some time t < Ty, where T}, is a suitable time horizon, selected based on system
dynamics, obstacle trajectories, and the computation rate of the avoidance maneuvers.

Ta acconnt for imminent collisions. we modifv the <ot Vf) hv cuibtractine from 1t the

4V QUL UL 1VUL 1adiaiaaat iy VULaSiUins, WU Uiy vt STy ¥ DU UL QU VLIS 11iVLiL L

set VO, defined as: J

VOhZ{VA|VAEVO, HVA,B ||§ ?7:} (5)
where d,,, is the shortest relative distance between the robot and the obstacle. The set
V Oy, represents velocities that would result in collision, occurring beyond the time horizon.

Figure 5 shows the modified VO, where the velocity set VO, has been removed.

-1

Figure 5: The velocity obstacle VOpg for a short time horizon.

3. The Avoidance Maneuver

In this Section, we describe the avoidance maneuver, consisting of a one-step change
in velocity to avoid a future collision within a given time horizon. We start by discussing
the set of reachable velocities that account for robot dynamics and actuator constraints.

3.1. The Reachable Avoidance Velocities

The velocities reachable by robot A at a given state over a given time interval At
are computed by mapping the actuator constraints to acceleration constraints. The set

Set of admissible
accelerations

>

Figure 6: The Feasible Accelerations

[@¢)

Figure 7: The reachable avoidance velocities RAV.

of feasible accelerations at time t, FA(¢), is defined as:
FA(f) = {%|% = f(x, % u),u € U} %)

where x is the position vector, f(x, %, u) represents the robot dynamics, u is the vector
of the actuator efforts, and U is the set of admissible controls.

The set of reachable velocities, RV (t + At), over the time interval Az, is thus defined
as:

RV(t + At) = {v|v =v4(t) ® At-FA(2)} (7)

It is computed by scaling FA(¢) by At and adding it to the current velocity of A, as shown
schematically in Figure 6.

The set of reachable avoidance velocities, RAV, is defined as the difference between
the reachable velocities and the velocity obstacle:

RAV(t + At) = RV(t + At) © VO(#) (8)

where © denotes the operation of set difference. A maneuver avoiding obstacle B can
then be computed by selecting any velocity in RAV. Figure 7 shows schematically the
set RAV consisting of two disjoint closed subsets. For multiple obstacles, the RAV may
consist of multiple disjoint subsets.

It is important to note that the reachable set (7) accounts only for constraints on the
robot accelerations, which we call dynamic constraints. In the context of mobile robots,
non-holonomic kinematic constraints, which prevent the vehicle from moving sideways,
need also be considered. However, the non-holonomic constraints are relevant only at low
speeds, such as during parking, since at high speeds the dynamic constraints are gener-
ally more restrictive, as shown schematically in Figure 8. In other words, the bounded

NeJ

reachable velocities due to
kinematic constraints —<a.

minimum reachable

turning velocities

radius due to dynamic
constraints

Figure 8: Dynamic versus kinematic constraints.

accelerations prevent the vehicle from moving sideways at non-zero forward speeds, thus
automatically satisfying the non-holonomic constraints (Shiller and Sundar, 1996). For
this reason, we will disregard the non-holonomic kinematic constraints in computing the
feasible avoidance maneuvers.

3.2. Structure of the Avoidance Maneuvers

Avoidance maneuvers can be classified according to their position with respect to the
moving obstacle. In general, the avoidance velocities form two disjoint sets separated by
the set of colliding velocities, as was shown in Figure 7. The boundary between colliding
and non-colliding velocities consists of the velocities laying on the two lines Ay and A,,
generating a maneuver tangent to B at some point P € dB. To choose the structure of
an avoidance maneuver, it is then necessary to determine on which side of the obstacle
each maneuver will pass.

We identify the front and rear sides of B by attaching a coordinate frame (X,Y) to
the center of B, oriented with its X axis coinciding with the velocity vg. The Y axis then
partitions the boundary of B, 8B, at points Y; and Y, into the front semi-circle, By,
which intersects the positive X axis, and the rear semi-circle, 0B, , as shown in Figure 9.

The following Lemma states that tangent maneuvers can be generated only by relative
velocities laying on Ay and A,, and that the actual tangency points of these maneuvers
are different from the tangency points 1% and 7, of A\; and A, since they depend on the

Py NURR JUS AP I JRp (N RS R | A Goriirter v vt adtioane Eemiiamns 10 Gl o ot 1T a1
AUsSOLuLe veloClIules O A dlld D, AbBSUIILLILE 110 10LatlOlls, I1gUre 1U SHOWDS SCILCIHLaLICAlly LIIE
position of the tangency point P at time ¢y, when the avoidance maneuver is computed,

and at time ¢;, when A reaches B.

Lemma 1: Robot A is tangent to obstacle B at some point P € 0B iff it follows a
trajectory generated by v, corresponding to v4p € {Af, A\, }. The tangency sets in OB

’._l
[e]

A
A

Figure 9: Grazing arcs in an avoidance maneuver.

NAR +ta V M

Ly — Ap il 1ULJ VU Ly, -

This Lemma, is proved in Appendix A.
As discussed earlier, the boundary of the velocity obstacle VO, {4y, é, }, represents all

Figure 10: Trajectory tangent to B.

—
=

Figure 11: General structure of the reachable avoidance velocities.

absolute velocities generating trajectories tangent to B, since their corresponding relative
velocities lay on Ay and A.. For example, the only tangent velocities in Figure 7 are
represented by the segments KH and LM of the reachable avoidance velocity set RAV.

Since the tangent velocities are uniquely determined by Ay and A,, we use them
to label the subsets in RAV containing velocities generating a single type of avoidance
maneuver. The set RAV in Figure 11 is subdivided into the three subsets Sy, S,, and
S, by the boundary of VO and by the straight line passing through A and the apex of
VOpg. Each of these subsets corresponds to rear, front, or diverging avoidance maneuvers,
respectively, as stated in the following Lemma. A diverging maneuver is one that takes
the robot A away from the obstacle B.

Lemma 2: The reachable avoidance velocities RAV due to a single obstacle consists
of at most three non-overlapping subsets Sy, S,, and Sy, each representing velocities
corresponding to front, rear or diverging maneuvers, respectively. O

The proof of this Lemma is given in Appendix A.

The RAV set due to one obstacle may consist of at most three subsets. Clearly,
there can be cases where RAV consists of fewer sets, one, two or none, as was shown in
Figure 7. For the case of multiple obstacles, we represent each RAV set by S, where s is
an ordered string of characters (f,r,d) representing the type of avoidance of each obstacle.
For example, the set Sy; shown in Figure 12 includes velocities generating maneuvers that
avoid both obstacles B; and B, with a front maneuver. The set Sy, corresponds to the
front avoidance of By and rear avoidance of By, respectively.

’._l
[N]

B, f

Figure 12: Classification of the reachable avoidance velocities.

The properties of the RAV generated by multiple obstacles are summarized in the
following Theorem, whose proof is given in Appendix A.

Theorem 1: Given a robot A and m moving obstacles B; (j = 1,...,m), the reachable
avoidance set RAV consists of at most 3 m subsets, each including velocities corresponding
to a unique type of avoidance maneuver. O

The Theorem states that it is possible to subdivide the avoidance velocities RAV into
subsets, each corresponding to a specific avoidance maneuver of an obstacle. For example,
this knowledge about maneuver types can be used by an intelligent vehicle in avoiding a
potentially dangerous obstacle: a car avoiding a big truck may choose a rear avoidance
maneuver, even though a front maneuver might also be feasible, for the sake of safety. A
procedure for computing the sets of avoidance velocities is described in Appendix B.

4. Computing the avoidance trajectories

This section presents a method for computing trajectories that avoid static and mov-
ing obstacles, reach the goal, and satisfy the robot’s dynamic constraints. A trajectory
consists of a sequence of avoidance maneuvers, selected by searching over a tree of feasible
maneuvers computed at discrete time intervals. We propose a global search for off-line

apphgaﬁons’ and a heuristic search for on-line annlications

SRV LCRLisviL dStalll 1V LL-LLD GppillauiViis.

4.1. Global Search

The tree of avoidance maneuvers is generated by computing the reachable avoidance
set RAV at discrete time intervals. The nodes on the tree correspond to the positions of
the robot at times ¢;, and the branches correspond to the avoidance maneuvers at those
positions. The operators expanding each node into its successors at time ¢;.; = ¢, 4+ 7, i.e.

—_
(U8)

Figure 13: Tree representation for the global search.

generating the avoidance maneuvers, are the velocities computed by discretizing RAV.
The search tree is formally defined as follows:

ni(t;) = {x;,RAV (#,))} (9)
0(t;) = {wvilts) | vi(t:) € RAV; ()} (10)
ejk(ti) = {(n;(t:), ne(tiv1)) | ne(tivs) = ng(t:) + (05, 1)} (11)

where n; if the jth node at time ¢;, RAV;(¢;), is the reachable velocity set computed for
node n;, 0;, is the [th operator on node j at time ?;, and e; is the branch between node
n; at time ¢;, and node n; at time #;.4.

To keep the computation manageable, each avoidance set RAV(¢;) is discretized by a
grid. The positions reached by the robot at the end of each maneuver are the successors of
node n;(¢;). A node n,;(t;) is completely expanded when all the operators 0,; € RAV; have
been applied. The resulting tree has a constant time interval between nodes, and a variable
branch number that depends on the shape of each RAV. By assigning an appropriate
cost to each branch, this tree can be searched for the trajectory that maximizes some
objective function, such as distance traveled, motion time, or energy, using standard
search techniques (Nilsson, 1980; Pearl, 1985). Figure 13 shows schematically a subtree
of a few avoidance maneuvers.

Since the avoidance maneuvers are generated using the velocities in RAV, each seg-
ment of the trajectory avoids all the obstacles that are reachable within the specified time
horizon. This excludes trajectories that might, on some segiment, be on a collision course
with some of those obstacles, and that would avoid them on a later segment. Therefore,
this method generates only conservative trajectories. Trajectories excluded from the com-
putation can be generated by considering a shorter time horizon, or by computing the
time-minimal trajectories (Fiorini, 1995).

—
H~

Max angle (b) (©)

Figure 14: a: TG strategy. b: MV strategy. c: ST strategy.

4.2. Heuristic Search

For on-line applications, the trajectory can be generated incrementally by expanding
only the node corresponding to the current robot position, and generating only one branch
per node, using some heuristics to choose among all possible branches.

The heuristics can be designed to satisfy a prioritized series of goals, such as sur-
vival of the robot as the first goal, and reaching the desired target, minimizing some
performance index, and selecting a desired trajectory structure, as the secondary goals.
Choosing velocities in RAV (if they exist) automatically guarantees survival. Among
those velocities, selecting the ones along the straight line to the goal would ensure reach-
ing the goal. Selecting the highest feasible velocity in the general direction of the goal
may reduce motion time. Selecting the velocity from the appropriate subset of RAV can
ensure a desired trajectory structure (front or rear maneuvers). It is important to note
that there is no guarantee that any objective is achievable at any time. The purpose of
the heuristic search is to find a ”good” local solution if one exist.

We have experimented with the following basic heuristics:

1. Choose the highest avoidance velocity along the line to the goal, as shown in Fig-
ure 14-a, so that the trajectory takes the robot towards its target. This strategy is
denoted in the following by TG (to goal).

2. Select the maximum avoidance velocity within some specified angle o from the line
to the goal, as shown in Figure 14-b, so that the robot moves at high speed, even if it
does not aim directly at the goal. This strategy is henceforth called MV (maximum
velocity).

3. Select the velocity that avoids the obstacles according to their perceived risk. This
strategy is called ST (structure). In Figure 14-c¢ the chosen velocity is the highest
among the rear avoidance velocities.

Other heuristics may combine some or all of the above strategies. For example, the
avoidance velocity could be chosen as the fastest velocity pointing towards the target
and generating a rear avoidance maneuver. It might be advantageous to switch between
heuristics in order to yield trajectories that better satisfy the prioritized goals. Examples
of trajectories generated by these heuristics are presented in the following Section.

—
Ot

start @

OR0 @@Q

Figure 15: Trajectories avoiding static obstacles.

2

P
O
~—

5. Examples

This Section presents several examples of navigation in static and dynamic environ-
ments using the Velocity Obstacle approach.

5.1. Avoidance of static obstacles

The first two examples demonstrate the applicability of this approach to static en-
vironments. Here, a point robot avoids eight circular obstacles, arranged as shown in
Figure 15, starting from rest from two different points. The trajectories shown in Fig-
ure 15 were computed every 1 s using the MV heuristics, and time horizon T}, = 10 s. The
trajectory in Figure 15-a first follows the boundary of the velocity obstacle of obstacle 1,
then switches to obstacle 5. Similarly, the trajectory in Figure 15-b switches from obsta-
cle 3, to 2, and finally to 5. In this case, obstacle 1 was not obstructing the target after
avoiding obstacle 2. In both cases, setting the time horizon higher, to Ty, = 20 s, resulted
in no solution since the reachable avoidance velocities RAV at the the initial positions
were completely covered by the VO of the static obstacles.

5.2. Avoidance of fixed and moving obstacles

This example demonstrates avoidance of static and moving obstacles that move along
circular trajectories. The robot starts from rest at the center, as shown in Figure 16-a, first
avoiding the small static obstacles, and then avoiding the large moving obstacles, using
the MV heuristics. The trajectory is shown in three snapshots in Figures 16-(b,c,d),
corresponding to times ¢ = 24 s, t = 29 s, and the final time ¢t = 37.6 s, respectively. After
avoiding obstacle 1, the robot moves to avoid the incoming obstacle 8. It aims at being
tangent to obstacle 8, which explains the initial distance from the obstacle in Figures 16-
(b). The robot is eventually tangent to obstacle 8, as shown in Figure 16-c. From that
point on, the robot continues towards the target, as shown in Figure 16-d.

Here the robot slows down while approaching obstacle 8, as represented by the short
distance between the circles in Figure 16-b. This occurred due to the linear approximation
of the obstacle’s trajectory, which at those points made rear avoidance the only feasible

’._l
(@]

(c) (d)

Figure 16: Snapshots of the trajectory avoiding static and moving obstacles.

maneuver. Later, due to the change in direction of the obstacle, the front avoidance
maneuver became feasible, which explains the higher speeds at the distal end of the
trajectory shown in Figure 16-b.

5.3. Intelligent Highway Examples

The following examples demonstrate the proposed approach for intelligent vehicles
negotiating highway traffic.

5.3.1. Moving to the Exit Ramp

This example consists of a robotic vehicle in the leftmost lane, attempting to reach
the exit ramp on the right, while avoiding other two vehicles that move at constant speeds.
The initial velocity of the robot and of vehicle 2 is (v, = 30.0 m/s, v, = 0.0 m/s), and
the initial velocity of vehicle 1 is (v, = 23 m/s, v, = 0.0 m/s). The initial velocities are
represented by vectors attached to the center of each vehicle. The grey circles represent
positions of the robot and of the obstacles when they cross each other’s path.

First, we computed the time-optimal trajectory using a global search, as discussed
in Section 4.1. The nodes of the tree were generated at 1s intervals. The RAV sets were

’._l
-1

robot

vehicle 2 C

Exit

Figure 17: Trajectory computed by global search.

discretized on average by 12 points, and the tree was expanded to a depth of 5 levels .

Using the Depth First Iterative Deepening algorithm (Korf, 1985) resulted in the
trajectory shown in Figure 17, with the motion time of 3.5 s.

Using the TG heuristic resulted in the trajectory shown in Figure 18. Along this
trajectory, the robot slows down and lets vehicle 2 pass, and then speeds up towards the
exit, behind vehicle 1. The total motion time for this trajectory is 6.07 s.

Using the MV heuristics produced the trajectory shown in Figure 19. Here, the robot
speeds up and passes in front of both vehicles 1 and 2. The total motion time along this
trajectory is 3.56 s. It compares favorably with the time of 3.5 s computed by the global
search.

Using both MV and TG strategies resulted in the trajectory shown in Figure 20.
Here, the robot first speeds up to pass vehicle 2, then slows down to let vehicle 1 pass,
and then speeds up again towards the goal. The motion time for this trajectory is 5.31 s.

vehicle 1

Exit

Figure 18: Trajectory computed with the TG strategy.

—_
(@]

robot

vehicle 2 :

vehicle 1

O

N’
Exit

Figure 19: Trajectory computed with MV strategy.

This trajectory was computed using the MV heuristics for 0 < ¢ < 2.0 s and the TG
heuristics afterwards.

5.3.2. Negotiating Highway Traffic

This example considers a "speeding” robot. First, the vehicles are represented by
small circles, simulating motorcycles. Using the MV heuristic resulted in the trajectory
shown in Figure 21. Here, the robot passes vehicle 1 without making a complete lane
change, and thus is not affected by the presence of vehicles 2 and 5.

Considering larger vehicles, and keeping the initial velocities the same as before,
resulted in the trajectory shown in Figure 22. Blocked by vehicle 2 from the left and
vehicle 3 from the right, the robot first slows down to attempt a lane change to the left
in order to pass vehicle 1. But then a higher velocity to the right becomes feasible, and
the robot speeds up in front of vehicle 3, passes vehicle 1 on the right, and returns to the
center lane.

vehicle 1

Figure 20: Trajectory computed with both TG and MV strategies.

19

Figure 22: Trajectory computed for a car.

6. Conclusions

A method for planning the motion of a robot in dynamic environments has been
presented. It is a first-order method since it relies on velocity information for planning an
avoidance maneuver. Planning in the velocity space makes it possible to consider robot
dynamics and actuator constraints. In contrast, most current planners are zero-order,
generating avoidance maneuvers based on position information, and most do not consider
robot dynamics.

Key features of this approach are: i) it provides a simple geometric representation
of potential avoidance maneuvers; i) any number of moving obstacles can be avoided
by considering the union of their VO’s; 4i7) it unifies the avoidance of moving as well
as stationary obstacles; iv) it allows for the simple consideration of robot dynamics and
actuator constraints.

The avoidance maneuvers are generated using a representation of the obstacles in the
velocity space, that we call the Velocity Obstacle. It represents the colliding velocities
of the robot with a given obstascle, that moves at a given velocity. General trajectories
are approximated by a sequence of piecewise constant segments. Robot dynamics are
considered by restricting the set of potential avoidance velocities to those reachable by
the set of admissible accelerations over a given time interval.

This approach was demonstrated numerically in several examples showing the appli-
cability of the proposed approach to the avoidance of static and moving obstacles, and
to obstacles moving along straight and curved trajectories. Also demonstrated was the
potential use of this method to effectively negotiate highway traffic.

20

7. Acknowledgment

The authors are grateful to the anonymous reviewers for their suggestions and exten-
sive reviews. The research described in this paper has been partially carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

21

References

Canny, J. and Reif, J. (1987). New lower bound techniques for robot motion planning
problems. In 28th IEEE Symposium on Foundation of Computer Science.

Erdmann, M. and Lozano-Perez, T. (1987). On multiple moving objects. Algorithmica,
2(4):477-521.

Featherstone, R. (1990). Swept bubbles: A method of representing swept volume and
space occupancy. Technical Report TR-90-024 and MS-90-069, Philips Laboratories,
North American Philips Corporation, Briarcliff Manor, New York 10510.

Fiorini, P. (1995). Robot Motion Planning among Moving Obstacles. PhD thesis, Univer-
sity of California, Los Angeles.

Fiorini, P. and Shiller, Z. (1993). Motion planning in dynamic environments using the
relative velocity paradigm. In IEEE International Conference of Automation and
Robotics, volume 1, pages 560-566.

Fiorini, P. and Shiller, Z. (1995). Robot motion planning in dynamic environments. In
Girald, G. and Hirzinger, G., editors, International Symposium of Robotic Research,
pages 237-248, Munich, Germany. Springer-Verlag.

Fiorini, P. and Shiller, Z. (1996). Time optimal trajectory planning in dynamic environ-
ments. In IEEE International Conference of Automation and Robotics, volume 2,
pages 1553-1558, Minneapolis, MN.

Fiorini, P. and Shiller, Z. (1997). Time optimal trajectory planning in dynamic environ-
ments. Journal of Applied Mathematics and Computer Science, 7(2):101-126.

Fraichard, T. (1993). Dynamic trajectory planning with dynamic constraints: a state-
time space approach. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1393-1400, Yokohama, Japan.

Fraichard, T. and Laugier, C. (1993). Path-velocity decomposition revisited and applied
to dynamic trajectory planning. In IEEFE International Conference of Automation
and Robotics, volume 1, pages 40-45, Atlanta, GA.

Fujimura, K. (1994). Motion planning amid transient obstacles. International Journal of
Robotics Research, 13(5):395-407.

Fujimura, K. (1995). Time-minimum routes in time-dependent networks. IFEE Transac-
tion on Robotics and Automation, 11(3):343-351.

Fujimura, K. and Samet, H. (1989a). A hierarchical strategy for path planning among
moving obstacles. IEEE Transaction on Robotics and Automation, 5(1):61-69.

Fujimura, K. and Samet, H. (1989b). Time-minimal paths among moving obstacles.
In IEEE International Conference on Robotics and Automation, pages 1110-1115,
Scottsdale, AZ.

22

Fujimura, K. and Samet, H. (1990). Motion planning in a dynamic domain. In IEEE
International Conference on Robotics and Automation, pages 324-330, Cincinnati,

OH.

Fujimura, K. and Samet, H. (1993). Planning a time-minimal motion among moving
obstacles. Algorithmica, 10:41-63.

Hayward, V., Aubry, S., Foisy, A., and Ghallab, Y. (1995). Efficient collision predic-
tion among many moving obstacles. International Journal of Robotics Research,
14(2):129-143.

Kant, K. and Zucker, S. (1986). Towards efficient trajectory planning: the path-velocity
decomposition. The International Journal of Robotic Research, 5(3):72-89.

Korf, R. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Ar-
tificial Intelligence, (27):97-109.

Lee, B. and Lee, C. (1987). Collision-free motion planning of two robots. IEEE Transac-
tions on System Man and Cybernetics, SMC-17(1):21-32.

Nilsson, N. (1980). Principles of Artificial Intelligence. Tioga, Palo Alto, CA.

O’Rourke, J. and Badler, N. (1979). Decomposition of three-dimensional objects into
spheres. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
1(3):295-305.

Pearl, J. (1985). Heuristics. Addison Wesley Publishing, Co., Reading, MA.

Reif, J. and Sharir, M. (1985). Motion planning in the presence of moving obstacles. In
25th IEEE Symposium on the Foundation of Computer Science, pages 144-153.

Reif, J. and Sharir, M. (1994). Motion planning in the presence of moving obstacles.
Journal of ACM, 41(4):764-790.

Sanborn, J. and Hendler, J. (1988). A model of reaction for planning in dynamic environ-
ments. International Journal of Artificial Intelligence in Engineering, 3(2):95-101.

Shiller, Z. and Sundar, S. (1996). Emergency maneuvers of autonomous vehicles. In The
13th World Congress, IFAC96, volume Q, pages 393-398, San Fancisco, CA.

Tsubouchi, T. and Arimoto, S. (1994). Behavior of a mobile robot navigated by an
iterated forecast and planning scheme in the presence of multiple moving obstacles.
In IEEFE Conference on Robotics and Automation, pages 2470-2475, San Diego, CA.

23

A. Proofs of Lemmas and Theorem

Proof of Lemma 1:
The proof is carried out for B since there is a one-to-one correspondence between B and
B. Furthermore, only the front side of B, 0By, is analyzed, since the rear side, 0B,
is completely analogous. First, the necessary and sufficient conditions of the lemma are
proven by contradiction. Then a geometric construction is used to define the map between
the tangent velocities and the corresponding points on 0B;.

To prove the necessary condition, let us assume that there exists a velocity v 4 tangent
to obstacle B such that its corresponding relative velocity, v4 g is not on the boundary
of the collision cone CC4 g, or:

Jv,4 tangent to B|VA,B =(va—VE) &€ As

Then v4 p would be either inside or outside CC4 p. In the first case, by definition
of CCy g, it would correspond to a collision maneuver, whereas in the second case, it
would correspond to an avoidance maneuver, thus contradicting the hypothesis that v 4
is tangent to B.

The sufficient condition can be proved similarly, assuming that there exists a relative
velocity va p on the boundary of the collision cone C'C4 p, that does not generate a
maneuver tangent to E, or:

dvap € A such that vy = (v p — vp) not tangent to B

Then, v 4 would be either colliding or avoiding, and thus it will be either inside or outside
the velocity obstacle VO. This would contradict the definition of VO, which is computed
by translating the collision cone CC4 p by the velocity of B, vg. In particular, all
velocities on Ay become velocities with the tip on d;.

We prove the second part of the Lemma by construction, computing the tangency
points that correspond to each tangent velocity va g € A;. The tangent relative velocities
are represented by the semi-infinite line {fAl, Ar}, with minimum and maximum relative
velocities given by |[v4 | — 0, and |v4 g| — oo, respectively. The former velocity cor-
responds to the limit point Y;, when A and B move on parallel trajectories. The latter
velocity corresponds to the limit point 1.

The correspondence between any other velocity 0 < v4 p < 0o, and a tangency point
P € (Iy,Yy) is established by using the orthogonality between a tangent trajectory t,
due to vy = (va,p — vg), and the line [through the center of B and the tangency point.
The right angle between ¢ and [can be embedded into the circle C of diameter (/Al,f?), as
shown in Figure 23. Thus, given a desired tangency point P € 9By, circle C maps it into
the direction of the corresponding tangency trajectory ¢, represented by the line through
Aand Q, as shown in Figure 23. Similarly, given a desired tangency direction ¢, circle C
maps it into point P, represented by the intersection of 0B with the line through the
center of B and Q.

The magnitude of the velocity v4 tangent to B in P is found using the velocity
obstacle VO, whose boundary 4 represents all front tangent velocities. Then, the inter-
section R of the trajectory line ¢ with ; gives the magnitude of v4. The magnitude of
the corresponding relative velocity follows from the definition v4 p = v4 — vpg.

24

Figure 23: Contact points of tangent trajectories.

Note that the magnitude of the velocity v 4 tangent to Bin P' € 9B, is simply given

by the intersection S of ¢ and ¢,.

|
Proof of Lemma 2:
The subsets Sy and S, of the reachable avoidance velocities RAV include in their boundary
a segment of the boundary of the velocity obstacle VOpg, 0(VOpg). Subset Sy, instead,
does not include in its boundary any segment from the boundary of VOpg. From Lemma 1,
velocities with tip on these segments generate trajectories grazing B, and therefore only
subsets Sy and S, include tangent velocities.

Tangent velocities separate collision velocities from avoidance velocities, and there-
fore, a velocity v4 € {Sy, S, }, whose tip is away from the boundary 0(V Op) will generate
a trajectory passing at a certain distance from Bj;, on the same side of the tangent tra-
jectory.

Similarly, trajectories generated by velocities vy, € Sy cannot be tangent to B in
a finite time, since the boundary of Sy is the velocity parallel to vg. Therefore, if this
subset exists in RAV, it contains all the velocities diverging from B.

|
Proof of Theorem 1:
From Lemma 2, each velocity obstacle VOp, divides the set of reachable avoidance ve-
locities RAV into three non-overlapping subsets. Then, m obstacles, B; (j = 1,...,m),

25

generate 3m subsets, that are partially overlapping. Let us assume that RAV is divided
into [non-overlapping subsets RAV; i =1,...,1.

Each subset, O(RAV;), may include segments from the boundaries of some veloc-
ity obstacles VOp,, 0(VOp,). From Lemma 2, all velocities in the same subset RAV;
will generate the same type of avoidance maneuver. Then, if the boundary of a RAV;
O(RAV;), includes segments from the boundary of n different velocity obstacles VOp, (j =
1,...,n; n < m), all velocities vy € RAV; will generate trajectories avoiding each of the
n obstacles B; (j = 1,...,n; n < m) with the maneuver determined by the portion of
d(V O,) included in O(RAV;). Then, each subset RAV; corresponds to a specific maneu-
ver type, represented by indices 4/, where the index i represents the type of avoidance
velocity, i.e. (i=f,r,d), and 5, (j =1,...,m) is the index of the obstacle.

Some obstacles do not contribute directly to the boundary of a RAV; because a
successive VOp, has covered the corresponding segment of the boudary of the RAV;.
In this case the correct sequence of avoidances is generated incrementally during the
computation of the RAV;.

|

26

(c) (d)
VOB
A
r
A f
A oo A Sd
A A®

Figure 24: The computation of the Reachable Avoidance Velocities RAV.

B. Generating the Set of Avoidance Velocities

The procedure used for generating the sets of Reachable Avoidance Velocity RAV,
S; (i=d,f;r), for robot A is illustrated in Figure 24. The Figure shows the set of reachable
velocities RV, the velocity obstacle VOpg for a long time horizon Ty, and the line [,,
passing through A and the apex of VOpg. The §; sets are represented by the ordered
lists of their vertices V; = {(z;,4;), (li—1,1;)}, each specified by its position and by its
supporting lines. The lists are ordered counter-clockwise so that the interior of the set is
on the left of its boundary.

The procedure for computing S; consists of the following steps:

1. Compute the sets of diverging velocities and of non-diverging velocities by inter-
secting RV with the line [,,. Figure 24-a shows the two sets represented by vertices
(5,2,3,6) and(1, 5,6, 4) respectively. Label the set of diverging velocities S, and the
set of non-diverging velocities S,4.

2. Compute the intersections between the boundary of S,4 and of the velocity obstacle
VOg, and insert them into the list representing 5,4. Figure 24-b shows the inter-
sections as points (7,8,9). The new list representing 5,4 becomes (1,5,8,6,4,9,7).

27

3. Compute the sets of non-colliding velocities, i.e. (S,q ©V Op) by marching counter-
clockwise along the boundary of 5,4 and clockwise along the boundary of VOg,
starting from the first vertex that is external to V Opg. This corresponds to assigning
a positive value to S, and a negative value to VOp. Figure 24-c shows schematically
the march along the boundaries of Sy, starting from vertex 1 and generating the
difference sets represented by (9,8,6,4) and by (1,5,8,7).

4. Label the non-colliding velocity sets according to the segments of VOp included in
their boundary. The set including a segment of the rear boundary of VOpg A, is
the set of rear avoidance velocities S,, and the set including a segment of the front
boundary Ay is the set of front avoidance velocities Sy, as shown in Figure 24-d.

To consider multiple obstacles, this procedure is applied recursively to each subset 5,
(i=d,f,r), of RAV, generating smaller subsets S;, where the index s is a string representing
the type and sequence of avoidance maneuvers of each obstacle. For example, three
obstacles might generate up to 9 avoidance velocity sets, such as Sy,q representing a front
avoidance maneuver of the first obstacle, a rear avoidance of the second, and a diverging
maneuver from the third obstacle.

The upper bound on the number of sets S, is 3m, where m is the number of obstacles
in the environment. However, the actual number is much smaller, because the lines [,,
from A to the apex of each VOp, do not intersect each other. Also, many of the potential
subsets Sy may be covered by some of the VOp,. Generally, we observed that the higher
the number of obstacles, the fewer the sets .S; remaining to be computed. To ensure that
the set RAV is not empty, sometimes it is necessary to shorten the time horizon, thus
reducing the size of some of the VOp,.

