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Abstract. In this paper we describe the novel concept of performance-based progressive robot therapy that uses
speed, time, or EMG thresholds to initiate robot assistance. We pioneered the clinical application of robot-assisted
therapy focusing on stroke—the largest cause of disability in the US. We have completed several clinical studies
involving well over 200 stroke patients. Research to date has shown that repetitive task-specific, goal-directed,
robot-assisted therapy is effective in reducing motor impairments in the affected arm after stroke. One research goal
is to determine the optimal therapy tailored to each stroke patient that will maximize his/her recovery. A proposed
method to achieve this goal is a novel performance-based impedance control algorithm, which is triggered via speed,
time, or EMG. While it is too early to determine the effectiveness of the algorithm, therapists have already noted
one very strong benefit, a significant reduction in arm tone.
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Introduction

One overarching goal drives our research and develop-
ment activities: to revolutionize rehabilitation medicine
by applying robotics and information technology that
can assist, enhance, and quantify rehabilitation—
particularly neuro-rehabilitation. Unlike predecessors
who used robotics as an assistive technology for the dis-
abled, our research uses robots and computers to sup-
port and enhance the clinicians’ productivity as they
facilitate a disabled individual’s functional recovery.
The embodiment of this goal is a new class of in-
teractive, user-friendly, clinical devices designed not
only for evaluating patients, but also for delivering
therapy via engaging “video games.” The science is
the understanding of the neuro-muscular, motor learn-
ing, and neuro-recovery processes. The engineering is
the design and control of human-machine interfaces in
general, and robot-aids for different limbs and body
segments in particular. A goal for both science and en-
gineering is the analysis of patient movement and force
generation. Our overarching goal might seem unduly
ambitious; a “technology push” rather than a “market
pull.” Yet as with other archaic industries, the rehabil-
itation field is ripe for a change. Consider that:

(1) Health care providers are disclosing systematic and
significant losses.

(2) The demand for rehabilitation services will in-
crease in the coming decades, since graying of the
population will almost certainly increase the num-
bers of cases.

(3) The expected increase in the number of patients
will increase the nation’s health care financial bur-
den. In fact, Health Care Financing Administra-
tion (HCFA) projected health care costs to surpass
16.6% of the total Gross National Product (GNP)
in the year 2007 ($2.1 trillion), notwithstanding
significant pressure towards cost containment.

Robotics and information technology can provide an
overdue transformation of rehabilitation clinics from
labor-intensive operations to technology-assisted oper-
ations. Robot-aids not only are more efficient in deliv-
ering certain routine physical and occupational therapy
activities, but also provide a rich stream of data that can
facilitate patient diagnosis, customization of the ther-
apy, and maintenance of patient records (at the clinic
and at home).

Significance

In the US health care costs have escalated rapidly over
the past three decades, and are projected to surpass
16.6% of the total GNP in the year 2007 ($2.1 trillion),
despite significant current efforts to contain and reduce
costs. Graying of the population will almost certainly
aggravate this problem; according to World Health
Organization (WHO) in the coming years the popu-
lation over 65 years old should increase by 88%. This
group is particularly prone to suffer a cerebral vas-
cular accident (stroke) since the relative incidence of
stroke doubles for every decade after 55 years old
further burdening the system. In fact, stroke is the
leading cause of permanent disability in the US Over
700,000 Americans per year suffer a stroke; more than
half survive; in the US about four million stroke vic-
tims are alive today (Gresham et al., 1995). The eco-
nomic burden of stroke was estimated to be $30 billion,
equal to 3% of national health expenditures (American
Heart Association). A similar picture can be drawn for
Europe and Japan. For example, each year there are
over 920,000 new stroke cases in Europe with a 22%
30 day mortality. Of the survivor group, about 80%
will need rehabilitation (Brainin et al., 2000). Taking
Belgium as an average of continental disparities, there
are 20,000 new stroke cases per year of a total popu-
lation of 10 million (1:500 inhabitants). Of the 20,000
new stroke cases, the mortality rate is 48.6% within
the first eight weeks following the onset of the stroke
and of the 51.4% survivor group, 82% will need ther-
apy. Japan presents an even bleaker perspective, with
the lowest average birth rate among industrialized na-
tions of 1.3. If nothing changes, by 2025 there will be
two working-age adults (20 to 65 years old) for ev-
ery retirement-age person (65 and older). Graying of
the population is not the only factor pointing to a po-
tential increase in the need for rehabilitation services.
Pharmacological agents for neuro-protection under de-
velopment (e.g., nerve growth factors, better receptor
blockers, anti-oxidants, anti-inflammatory agents, and
blood-clot dissolving agents) may eventually reduce
the severity of stroke and increase the survival rate,
yet these advances will also increase the percentage of
stroke victims who require rehabilitation.

At present, physical and occupational therapy com-
prise the standard and presumably beneficial form of
treatment for these impairments, but they are labor-
intensive and expensive. Until recently, health care
providers have reduced rehabilitation costs primarily
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by shortening inpatient hospital stays. Once the practi-
cal limit of abbreviated inpatient stays is reached, fur-
ther efficiencies will be attainable chiefly by addressing
clinical practices themselves. While skilled therapists
can achieve good results with even rudimentary equip-
ment, the maximum effectiveness of their existing
“toolbox” is rapidly being reached. To increase pro-
ductivity new tools are needed. Our research suggests
that robotics and information technology can transform
rehabilitation clinical practice from its present basis in
manual operations to a more technology-rich opera-
tion. This situation creates a pressing need for new
therapeutic strategies to increase productivity while
optimizing the quality of care, and an opportunity to
take advantage of recent advances in technology—
especially in robotics, sensing, information processing,
and telecommunications.

Clinical Perspective

The centerpiece of our ongoing research and develop-
ment program is MIT-MANUS, a robot specifically de-
signed and built for clinical, neurological applications
(Hogan et al., 1995; Krebs et al., 1998).1 Because the
mechanical system was designed to have a low intrin-
sic end-point impedance, with extremely low inertia
and friction (i.e., it is highly “back-drivable”), MIT-
MANUS is able to move smoothly and can rapidly
comply with a patient’s motor actions (Krebs et al.,
1999, 2001). The robot sensors permit accurate and es-
sentially continuous measurement of the key variables
relevant to motor behavior, namely position, velocity,
and interaction forces. MIT-MANUS has two degrees-
of-freedom (DOF) that can move a patient’s shoulder,
elbow, and hand in a horizontal, gravity-eliminated
plane. During therapy, the person’s hemiparetic arm
is placed in a customized arm support that is attached
to the end-effector (i.e. handle) of the robot arm. As pa-
tients move the robot arm toward a designated target, a
video screen in front of them provides visual feedback
of the target location and movement of the robot handle
(see Fig. 1). If the person is unable to move, the robot
guides the hand to the target in a similar manner as
a therapist provides hand over hand assistance during
conventional therapy.

Research to date has shown that repetitive task-
specific, goal-directed, robot-assisted therapy can be
effective in reducing motor impairments in the af-
fected arm after stroke (Aisen et al., 1997; Volpe et al.,
1999, 2000; Krebs et al., 2000). Table 1 summarizes

Figure 1. Stroke patient during robot-aided therapy at the burke
rehabilitation hospital (White Plains, NY).

the outcome of seventy-six stroke patients exhibiting a
unilateral lesion who were enrolled in the initial clini-
cal trials, which lasted approximately 5 weeks per pa-
tient. Patients were randomly assigned to experimental
and control groups. The experimental group received
an hour per day of robot-aided therapy exercising the
shoulder and elbow. The control group received an hour
per week of “sham” robot-aided therapy with the same
video games. The results of the initial studies showed
statistically significant differences between the exper-
imental and control group for shoulder and elbow (the
focus of the exercise routines), but no differences for
wrist and fingers (which were not exercised), as mea-
sured by standard clinical instruments, e.g., the MRC
test of Motor Power and Motor Status Score (Medical
Research Council/Guarantors of Brain, 1986; Ferraro
et al., 2002). In fact, more recent results with additional
patients (Volpe et al., 2001) confirmed that this initial
approach of delivering mass practice therapy signifi-
cantly improved recovery by a factor of two in terms of
impairment reduction of inpatients (in absolute terms, it

Table 1. Change during acute rehabilitation (76 patients):
Experimental (RT) vs. control (ST) group—�1: Score
change from hospital admission to discharge; MP is the
motor power; MS1 is the motor status score for Shoulder and Elbow
(Medical Research Council/Guarantors of Brain, 1986; Ferraro
et al., 2002); p < 0.05 for statistical significance (∗).

Group (76 inpatients) MP (range/20) �1∗ MS1 (range/40) �1∗

RT (40) 3.99 8.15

ST (36) 2.0 3.42
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Table 2. Change during outpatient rehabilitation (20 patients):
Experimental (RT) group—�2: Score change from admission into
the protocol to completion; MP is the motor power; MS1 is the Mo-
tor Status Score for Shoulder & Elbow (Medical Research Council/
Guarantors of Brain, 1986; Ferraro et al., 2002); p < 0.05 for statis-
tical significance (∗).

Group (20 outpatients) MP (range/20) �2∗ MS1 (range/40) �2∗

RT admission 13.7 24.7

RT discharge 14.9 26.1

means an additional 10% improvement). Table 2 sum-
marizes that a similar approach showed an additional
5% improvement for outpatients (6 weeks program
with 3 sessions per week) (Fasoli et al., 2003). In
this case, the outpatients at admission were their own
control and showed statistically significant differences
between admission and discharge for shoulder and
elbow (the focus of the routine).

Optimal Therapy

There is no reason to believe that a “one-size-fits-all”
optimal treatment exists. Instead therapy should be
tailored to each patient’s needs and abilities. Robot-
assisted therapy can be delivered in a variety of ways to
reduce motor impairment and enhance functional mo-
tor outcomes. Goal-directed therapeutic “games” can
be designed to address motor impairments including
poor coordination, impaired motor speed or accuracy,
decreased grasp or dexterity, and diminished strength,
as well as addressing cognitive or perceptual impair-
ments. Depending on the survivor’s impairment and le-
sion, robotic aids can provide passive, active-assistive,

Figure 2. Impedance controllers. The left plot shows the potential energy of the controller employed during the initial trials. The right plot
shows the potential energy for the novel adaptive controller.

active, and active-resistive exercises. They can also de-
liver therapeutic approaches with no equivalent expe-
rience in nature (Patton and Mussa-Ivaldi, 2001). The
understanding of what constitutes the most appropri-
ate therapy has the potential to become an intensively
active topic of research.

One innovative modality of robotic therapy de-
veloped recently in our lab is the inclusion of spe-
cific, movement-related feedback and control parame-
ter specification via a performance-based progressive
algorithm. The stroke rehabilitation therapy adminis-
tered during our initial clinical trials was a fixed, repet-
itive exercise cued by a video display. It consisted of
a series of assisted point-to-point moves, which ap-
peared to be well suited for patients with very limited
movement ability. During therapy, an impedance con-
troller2 with constant stiffness and damping was used
to guide the patient’s arm with a minimum-jerk move-
ment of constant duration from the starting position (∗)
to the end position (∗∗). The effect of the stiffness of the
controller can be visualized as a potential energy field
about a moving desired position (Fig. 2) that limits de-
viation along the target axis, y, and its normal axis, x .
Specifically, the command forces along these axes are
given by

Fc,x = −kx − bẋ (1)

Fc,y = −k(y − ym. j.) − bẏ (2)

ym. j. = lm

[
10

(
t

tm

)3

− 15

(
t

tm

)4

+ 6

(
t

tm

)5]
(3)

where ym. j. is the controller’s minimum jerk movement,
k is the controller stiffness, b is the controller damping,
lm is the length of movement, and tm is the duration of
movement.



Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy 11

The potential energy field of the new impedance
controller is also shown in Fig. 2. While the stiff-
ness of the previous controller tends to impede the pa-
tient from moving ahead of the desired trajectory, the
proposed controller allows capable patients to reach
the target unassisted because Fc,y = 0 in the range
ym. j. ≤ y ≤ lm . The command forces are defined by

Fc,x = −kx − bẋ (4)

Fc,y =




−kbw(y − ym. j.) − bẏ

0

−k(y − lm) − bẏ

∣∣∣∣∣∣∣
y < ym. j.

ym. j. ≤ y ≤ lm

y > lm


 (5)

During the proposed therapy, the time allotted for the
patient to make the move, tm , and the primary stiff-
ness of the impedance controller, k, are varied based
on the patient’s performance and variability, but the
“back wall” stiffness, kbw, is held constant. By using a
performance-based, progressive algorithm yet to be de-
fined, the therapy continuously challenges the patient.

This approach appears to be particularly well suited
if we consider typical examples of unassisted patient

Figure 3. Reaching movements made by patients with corpus striatum lesion—CS (8.9 cm3) and corpus striatum plus cortex lesion—CS+
(109.9 cm3). The left column shows a plan view of the patients’ hand path attempting a point-to-point movement. The right column shows hand
speed.

movements shown in Fig. 3. This figure illustrates quite
well that different stroke lesions can lead to quite differ-
ent kinematic behavior during reach. The first patient
makes pretty fast movements but aims poorly, while
the second one aims well but moves very slowly. The
novel modality of the proposed robot-assisted therapy
guides the hand of the patient that aims poorly without
holding him/her back and assists the other patient in
making faster movements.

Four Performance Measures

In an effort to keep patients motivated during therapy
sessions, a video display provides the patient with pos-
itive reinforcement during the session. The height and
color of four bars on the display reflect patient perfor-
mance. The four performance measures grade patients’
ability to initiate movement (PM1), to move from the
starting position to the target (PM2), to aim their move-
ment along the target axis (PM3), and to reach the
target position (PM4) (Krebs et al., 2001a, 2001b).
PM1 records how many times the patient initiated the
“game” by moving the arm above a speed threshold or
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Figure 4. Example of EMG activation for patient SK Top figure shows the plan view of the unassisted reaching movement. The lower left
set shows the hand position in x and y coordinates, the speed of movement, and the EMG activation for the pectoralis major, triceps, middle
deltoids, and biceps. The lower right set shows the polar distribution for the processed EMG. The solid line represents the mean and the dashed
line the standard deviation of repeated trials.

an electromyographic activation (EMG). PM2 is used
to adjust the time allotted for the move. PM3 is used to
adjust the controller stiffness. PM4 records the maxi-
mum distance the patient moved along the target axis.

The PM1 measurement evaluates how many times
the patient initiated movement toward the eight outer
targets during the game. We are using three different
modes to determine movement initiation. If the patient
fails to trigger the game for any of the three modes,
the game commences after 2 seconds. The first mode
requires patients to move the arm above a modest veloc-

ity threshold. It can be used with any patient indepen-
dent of his/her impairment level. While its use might
be obvious with mild and moderate strokes, one should
notice that the approach could also work with severe
strokes. Although restrained by seatbelts, patients en-
gage their trunk to initiate the movement (no particular
instruction is given but to try to reach the target). This
mode motivates the patient to try to move and not just
passively let the robot drive the arm. This mode is the
“default,” primarily because it does not require any ad-
ditional piece of hardware.
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As mentioned earlier, the impedance controller’s de-
sired trajectory has a minimum-jerk profile. Using the
yet-to-be-defined, performance-based, progressive al-
gorithm, the duration of the minimum jerk trajectory
(tm) will be varied. The velocity threshold is defined to
be 10% of the maximum speed of this minimum-jerk
trajectory, namely:

Vthreshold = 0.10

[
1.875

(
lm

tm

)]
(6)

where lm is the distance between targets in meters.
When the patient’s speed is greater than Vthreshold, the
novel impedance controller initializes the game. Since
the duration of the minimum jerk trajectory is changed
with patient performance, success in initiating move-
ment is also redefined. That is, as tm increases, Vthreshold

decreases, and vice versa.
The second mode uses processed EMG signals to

trigger the movement using a BagnoliTM from Delsys
(Boston, USA). We collected EMG activity in 14 mus-
cles of the shoulder and elbow during point-to-point
movements for normal subjects and stroke patients,
and then selected a subset of these muscles based on
accessibility, ease of accurate electrode placement on
muscle, and map of EMG activity. During all the re-
quired movements, at least one of the following four
muscles was active: pectoralis major, middle deltoid,
biceps, and triceps. The game is triggered when at least
one of the muscles’ processed EMG activity increases
above a threshold. The third mode is very similar to the
second one, but for each required movement direction,
the game is triggered only after seeing an increase in
EMG activation in a particular muscle.

The muscle is considered active if the processed
EMG exceeds the baseline activity by more than 3 stan-
dard deviations for at least 30 msec (to exclude heart-
beat). The EMG signal is processed with a high-pass
filter (Butterworth, 2nd order, 10 Hz), rectified, and
then processed with a low pass filter (moving average,
60 msec).

The PM2 and PM3 measurements evaluate a pa-
tient’s performance during each game, which consists
of moves to and from eight equally spaced radial tar-
gets. Figure 5 depicts the most promising candidates
for PM2, the ability to move (top row), and for PM3,
the ability to aim (bottom row), calculated from data
gathered from a representative patient at admission and
discharge. The first column depicts kinetic measure-
ments, whereas the second column is kinematic.

The kinetic measurement for PM2 is the average
power along the target axis (PM2a—borrowing the

Figure 5. Promising robot measures to define PM2 and PM3—
clinical results.

term from electrical engineering, PM2a is the “Active
Power”), and the kinematic measurement is the aver-
age deviation from the robot control system’s minimum
jerk trajectory (PM2b).

PM2a = 1

N

N∑
i=1

[Fy(i)ẏ(i)] (7)

PM2b = 1

N

N∑
i=1

[y(i) − ym. j.(i)] (8)

where Fy is the interaction force along the target axis,
ẏ is the velocity along the target axis, y is the position
along the target axis, ymj is the prescribed minimum
jerk trajectory of the “back wall” of the new impedance
controller, and N is the number of sampled points dur-
ing the move. Note that the representative patient data
shows that from admission to discharge these numbers
become less negative, indicating that the patient con-
tributed more force and motion to complete the task.

The kinetic measurement for PM3 is the average
absolute power normal to the target axis (PM3a—
borrowing the term from electrical engineering, PM3a
is similar to “Reactive Power”), and the kinematic mea-
surement is the root-mean-square deviation normal to
the target axis (PM3b).

PM3a = 1

N

N∑
i=1

|Fx (i)ẋ(i)| (9)

PM3b =
√√√√ 1

N

N∑
i=1

x(i)2 (10)
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Figure 6. Performance indices: Calibration curves from simulation.

where Fx is the force normal to the target axis. Both
measures for PM3 show that the patient’s ability to aim
improved between admission and discharge.

Simulations of a two-link human arm interacting
with a robot using the novel impedance controller were
conducted to determine how the performance measures
varied with the desired range of robot command vari-
ables and assumed patient variation. The controller
time allotted for a move from the starting position to the
desired target was varied between 1.5 and 4.5 seconds.
To assist patients with their aim, the stiffness of the
impedance controller was varied from 50 to 350 N/m.
It was also assumed that the patients’ simulated move
time, Ta , would lie in between 1.5 and 4.5 seconds, and
the maximum deviation along the normal to the target
axis on a curved trajectory, ndev, would be between 0.01
and 0.07 m.

The final selections for PM2 and PM3 are displayed
in Fig. 6. PM2, the ability to move, is defined as a
weighted sum of PM2a and PM2b. Thus, both kinetic
and kinematic information of the patient’s move are
contained in this performance measure. In particular,
the positive values represent the average deviation from
the commanded minimum jerk trajectory when the
patient is moving ahead of the assist, and the nega-
tive values represent the average power delivered from
MIT-MANUS to the patient during assisted moves.
By design, this composite performance measure was
able to distinguish patients who were capable of mov-
ing to the target in the specified time from those who
were not. A purely kinetic measurement was unable
to discriminate between subjects who moved ahead of
the robot assist because the robot was back-drivable.
Similarly, a purely kinematic measurement was unable

to discriminate between patients who required assis-
tance because the stiffness of the impedance controller
kept the patient close to the minimum jerk trajec-
tory. PM3, on the other hand, is defined solely as a
function of PM3b, the RMS normal deviation of the
patient.

Several observations can be made concerning PM2
and PM3. As the control parameters increase, the per-
formance measures also increase monotonically along
each line of constant patient parameters. Note, when
PM2 equals zero, the patient move time equals the com-
manded robot move time, and when PM3 equals zero,
each value of maximum patient normal deviation corre-
sponds to a value of controller stiffness. MIT-MANUS
is able to track the patient’s move time by using a simple
control law such as:

tm[J + 1] = tm[J ] + λ · PM2[J ] (11)

where tm [J ] is the controller move time during the J
game, and λ is the gain from PM2 to tm .

This tracking algorithm is a good first step, but we
are not simply interested in tracking the patients’ per-
formance, but intend to challenge them to improve their
performance or, at the very least, motivate them to
maintain it. During the initial m (out of M) games,
the control system operates in a tracking mode to iden-
tify how well the patient is able to complete the task.
Recall, when the controller parameters are changed, the
zero PM values occur at different levels of patient per-
formance. In order to help account for this, a secondary
performance measure will be introduced that serves as
an indication of patient variability. The performance



Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy 15

level (PL) is defined to be

PL =




−1

0

+1

∣∣∣∣∣∣∣
PM < −0.01

−0.01 ≤ PM ≤ 0.01

PM > 0.01


 (12)

The value of PL indicates whether patients perform
worse (PL = −1) or better (PL = 1) than their expected
ability at PM = 0. PL = 0 denotes when patients per-
form approximately the same.

The last M-m games in a session are grouped into
sections of 3 games each. During each of these sec-
tions, the desired controller move time and the con-
troller stiffness remain constant. By considering the
average PM values and the sum of the PL values
(−3 ≤ PLsum ≤ 3) during the three games, the con-
troller adapts to patients’ performance and variability,
and challenges them to continue to improve. The pro-
posed performance-based adaptive algorithm is stated
as follows:

tm |J+1,J+2,J+3 = tm[J ] + λ · α(PLsum) · PM2ave

where

α(PLsum) =




0.5

0.25

0.125

0.125

0.25

0.5

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

PLsum = −3

PLsum = −2

PLsum = −1

PLsum = 0

PLsum = +1

PLsum = +2

PLsum = +3




(13)

The desired effect of challenging patients to improve
while keeping them motivated is accomplished, in part,
by the asymmetry in the definition of α(PLsum). When
patients do consistently better than their previous per-
formance, α(+3) = 1, and when patients do consis-
tently worse, α(−3) = 0.5. Thus, the algorithm uses
information related to patient variability to dictate how
much of an increase or decrease of the parameter
there will be during the next 3 games. The asymmetry
challenges improving patients to improve further, but
makes the task easier, to a lesser extent, when patient
performance is worsening.

So far, we have discussed only the approach to mod-
ify the time for movement completion. An analogous
approach is used to alter the stiffness normal to the tar-
get axis. The only difference is the selection of λ, the
gain from PM3 to k.

Figure 7. Simulation of the adaptive algorithm for a therapy session
lasting for 20 repetitions.

Figure 7 displays a hypothetical case of a therapy
session lasting 20 games. The first row is the patient
simulation movement parameters, the second row is
for the progressively changing control parameters, and
the third row displays the PM2 and PM3 values that
would be displayed to the patient after games 5, 9, 14,
and 19. In this session, a (simulated) patient tries to
improve his/her aiming skills, but, as a result, moves
more slowly. Since the performance has improved with
respect to aim, the controller stiffness is decreased, pro-
viding less guidance and challenging him/her to further
improve. Although the patient’s preferred move time
has slowed to almost 3.8 seconds, MIT-MANUS com-
pletes the move in approximately 3.4 seconds. There-
fore, the algorithm allows the patient to slow down from
the original performance, but attempts to motivate the
patient to do better than the current performance. The
height of the bar graph displays for PM2 and PM3 are
given as percentages and are defined as:

PM% =
{

80 After Game 4

80 + c1
∑

PL + c2PMave

}
(14)

In this expression, c1 and c2 are scaled to limit patient
display between approximately 70 and 90% as the robot
parameters are changed. Recall that the purpose of the
visual display is to provide positive reinforcement to
the patient throughout the session.

The last of the performance measures is PM4. It
records the maximum distance reached away from
the workspace origin during a particular move. Its
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complement is the distance from the robot position to
the target position at the maximum distance reached.

The algorithm is currently being tested at the Burke
Rehabilitation Hospital, Helen Hayes Rehabilitation
Hospital, and Baltimore Veterans Administration Med-
ical Center. As mentioned earlier, in addition to the al-
gorithm challenging the patient to improve, a bar graph
is displayed every five games in an attempt to keep the
patient motivated and interested in the therapy session
(Krebs et al., 2001a, 2001b). Four bars are displayed
to report how well the subject can initiate movement,
move to the targets, aim along the target axes, and reach
the target position in the allotted time. Using shaping
techniques commonly adopted in learning studies to
assert error free performance (e.g., therapy to reduce
speech impairment (Merzenich et al., 1996)), the dis-
plays are appropriately scaled such that the subjects
nominally score between 70 and 90 percent as the robot
parameters are changed. This rewards the subjects’ ef-
fort and provides them with motivation to further im-
prove their performance.

Discussion

The fundamental mechanisms underlying neuro-
recovery are understood poorly at best. A prominent
theme of current neuroscience research into the seque-
lae of brain injury posits that activity-dependent plas-
ticity underlies neuro-recovery. Plasticity may be due
to the unmasking of pre-existing connections, activity-
dependent synaptic changes, or neosynaptogenesis,
the growth of new connections. Experimental support
for this idea derives primarily from measurements of
synaptic branching and cortical thickness in rats raised
in enriched and deprived environments (e.g., Diamond
et al., 1987, 1976, 1985, 1966; Greer et al., 1982) and in
monkeys recovering from ischemic injury (e.g., Nudo
et al., 1996). One challenge is to understand whether
the neurobiological mechanism for the changed motor
behavior is based on reorganization of normal cortex
tissue adjacent to the injured tissue, or of more distant
supplemental motor circuits (in the supplemental mo-
tor area, the basal ganglia, or cerebellum), or of the
unaffected hemisphere (Jenkins and Merzenich, 1987;
Jones and Shallert, 1994; Aizawa et al., 1994). Another
(and probably related) mechanism involves assump-
tion of lost function by adjacent areas of undamaged
brain tissue. Reorganization of cortical maps has been
demonstrated in the motor system (Asanuma, 1991;
Jacobs and Konoghue, 1991), sensory system

(Merzenich et al., 1984; Pons et al., 1988), visual sys-
tem (Kaas et al., 1990), and auditory system (King
and Moore, 1991). A further mechanism of recov-
ery of function post stroke involves the homolo-
gous regions of the unaffected contralateral cerebral
hemisphere substituting for the infarcted brain tissue
(Fisher, 1992; Glees, 1980; Sabatini et al., 1994). A
mechanism by which motor function may be con-
trolled by the unaffected ipsilateral hemisphere may be
through the 25% of pyramidal tract fibers that are un-
crossed (Nyberg-Hansen and Rinvik, 1963). Activity-
dependent cortical plasticity has been found to accom-
pany motor learning; rehabilitation and training after
injury have also been reported to influence the pattern
of re-organization. Timing of the stimulus during train-
ing is also an issue. Recent results with TMS (Tran-
scranial Magnetic Stimulation) timed with electrical
stimulation to the motor point of the FDI (first dor-
sal interosseous muscle) to determine the excitability
of the cortical projection suggested that proper timing
leads to an increase in size and excitability of the corti-
cospinal projection. The reverse is also true: improper
timing has a negative effect (Classen et al., 1998; Stefan
et al., 2000; Ridding et al., 1995).

The novel performance-based progressive algorithm
provides a mechanism for a patient to evolve from
hemiplegic to normal arm movement. Like a line in-
tegral, it specifies the initial and final conditions (PM1
and PM4) and the path between these conditions (PM2
and PM3). PM1 is particularly useful for hemiplegic
or severe hemiparetic patients as they recover some
movement. It requires the patient to actively partici-
pate in the initiation of movement guaranteeing proper
timing between afferent-efferent signals to induce in-
crease in the excitability of the corticospinal projec-
tions (speed or EMG threshold). It might be also used
to train the recruitment of a particular muscle group.
PM4 is useful for patients with either severe or mod-
erate hemiparesis. It rewards patients for relaxing their
arms, which might allow the impedance controller to
drive their hands closer to the target (reduce tone—
severe case), or it measures patients’ ability to move
to the target ahead of the controller. For patients with
moderate or mild hemiparesis, PM2 and PM3 provide
a speed-accuracy tradeoff.

The concept of using EMG to trigger the opera-
tion of another device is at least 50 years old. Norbert
Wiener proposed the concept of an EMG-Controlled
prosthetic arm in his well-known work “Cybernetics.”
Several researchers implemented this concept in
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different arm prostheses like the Boston-Utah and
Waseda arm (Hogan, 1976; Philipson, 1985; Kato et al.,
1967; Akazawa et al., 1983). EMG signals were also
proposed in exoskeletal devices to augment the hu-
man strength (Kazerooni, 1990; Rosen et al., 2001) and
as pattern classification (Graupe, 1983; Fukuda et al.,
1998; 2003; Peckham, 1980; Triolo, 1985). EMG has
also been used to study muscle activities in normal
subjects (Mussa-Ivaldi et al., 1985) and in the disabled
(Reinkensmeyer et al., 1999; Lum et al., 2000; Kearney
and Mirbagheri, 2001; Mirbagheri et al., 2001; Dewald
et al., 1995; Cozens, 1999). Nevertheless, to our knowl-
edge, nobody prior to our work suggested its applica-
tion to trigger robot-assisted therapy.

Although more subjects are needed to make a firm
statement about the effectiveness of the algorithm (ap-
proximately 20 have completed the therapy protocol to
date), the therapists administering the treatment have
already noted one very strong and somewhat unex-
pected benefit of the new therapy, a reduction in arm
spasticity and tone. Spasticity is a neurological condi-
tion causing an abnormal increase in muscle tone that
occurs when the muscle is stretched. In a single session,
comparing patient at the beginning and end of the ther-
apy activity, the therapists noted an “in-your-face” sig-
nificant reduction of tone. Other modalities of robotic
therapy tend to increase spasticity or keep it constant.

Conclusion

In this paper we have presented a novel algorithm
that, in the best tradition of motor learning, maximizes
the chances to deliver optimal therapy. It continuously
engages the patient in the activity, while respecting
purported timing to increase in size and excitability
of the corticospinal projection. It regulates the speed-
accuracy tradeoff while taking an errorless approach.

Naturally the desired outcome of rehabilitation is
not merely a reduction of impairment, but an improve-
ment in functional abilities and participation in daily
life tasks. Currently, robot-assisted therapy is primarily
administered in isolation from other rehabilitation ef-
forts, with little emphasis on the practice of trained
movements during daily functional tasks. Research
studies have indicated that the use of imagery-based
tasks and the presence of objects during goal-directed
tasks can significantly enhance movement kinematics
during reach, in persons with and without CVA (Wu
et al., 1998). Therefore we are in the process of inte-
grating the performance-based progressive algorithm

into functional tasks. We are developing a therapeutic
practice model that 1) uses imagery-based, simulated
tasks during robotic therapy sessions implemented with
the same performance-based progressive therapy and
2) is directed toward the carryover of robot-trained
movements during functional activities. At the same
time, to augment the potential of robot-assisted neuro-
rehabilitation, we are developing additional robots to
work with different muscles and limb segments, e.g.,
spatial motion, wrist, fingers, and legs (Jugenheimer
et al., 2001; Buerger et al., 2001; Williams et al., 2001;
Krebs et al., 2002; Celestino et al., 2003). The intent is
that this functionally-based robotic therapy may im-
prove the generalization of learned/recovered motor
skills, and thereby enhance functional motor perfor-
mance and reduce impairment of those who matter:
stroke survivors.
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Notes

1. Industrial robots can be programmed to follow different paths or
exert different forces, but not both simultaneously. Only robots
designed specifically to be interactive (i.e., backdriveable) can be
programmed to deliver interactive therapy and different force field
patterns (active, semi-active, passive, resistive) including patterns
that are non-existent in nature.

2. Conceived in the early 1980’s by one of the co-authors (Neville
Hogan), Impedance Control has been applied successfully in
numerous robot applications including human-motor interaction
(Hogan, 1985). It has been extensively adopted by other robotics
researchers concerned with human-machine interaction (see, e.g.,
the February 1997 issue of IEEE Control System, Special Issue on
Robotics, which contains several articles on impedance control).
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