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Objective of my research

Design and Development of 
modular system
able to 
generate, control and coordinate
robotic platform movements
in order to 
reach and stable grasp a object
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Motivation
To generate, control and coordinate
the movements of increasingly 
complex, difficult to model, and 
reconfigurable biorobotic systems

Biomimetic legged
capsule

Polychaeta-like robot Human-like upper body
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Anthropomorphic head & retina-like vision system
7 d.o.f.s (neck & eyes)
7 proprioceptive sensors
2 cameras

Anthropomorphic arm
8 d.o.f.s
16 proprioceptive sensors

Biomechatronic hand
10 d.o.f.s
16 proprioceptive sensors
9 tact. sensors

Total
d.o.f.s: 25
Visual sensors: 2
Proprioceptive sensors: 39
Tactile sensors: 9

The robotic platform
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The head

Axis 1, Roll

Axis 2, Yaw

Axis 4,
Eye Pitch

Axis 3, 
Upper Pitch

Axis 0, 
Lower Pitch

Axes 5 and 6, Right and Left Eye Pitch
Head
7 d.o.f.s (neck: 4 d.o.f.s, eyes: 3 d.o.f.s)
Dimensions: neck, 200x100x100 mm

head, 180x200x150 mm
Weight: about 5.3 Kg
Intraocular distance: variable from 60 to 100 

mm.
Ranges of motion and speeds:

Eye Pitch Axis: +47°, 600°/s
Eye R/L Yaw Axis: +45°, 1000°/s
Yaw: +100°, 170°/s 
Roll: +30°, 25°/s
Upper Pitch: +30°, 120°/s
Lower Pitch: +25°, 20°/s

Ocular movements: saccades, smooth pursuit,
and vergence
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The Dexter Arm

8-d.o.f. anthropomorphic redundant robot arm, composed of trunk, 
shoulder, elbow and wrist
mechanically coupled structure: the mechanical transmission system is 
realized with pulleys and steel cables
main characteristics: reduced accuracy,lighter  mechanical structure, safe 
and intrinsically compliant structure

D.o.f.: 8
Velocity: 0.2 m/s
Workspace: 1200 mm x 350°
Repeatability: + 1mm
Weight: 40 Kg
Payload: 2 Kg
Power: 24V DC



7

Proprioceptive System
3 position Hall-effect sensors, one per phalanx, for each finger
4 motor encoders
3 force tension sensors providing the tension of the actuation cable

Tactile System
a 3D force sensor for each finger embedded in the fingertip 
providing the three force components of the contact
9 ON/OFF contact sensors for each finger:

- 1 on the distal phalange
- 1 on the intermediate phalanx
- 1 on the proximal phalanx

Hand mechanical specifications
10 d.o.f.s; 6 underactuated, 4 motor actuat.

three identical underactuated 3 dof fingers with 
cylindrical phalanges, driven by a single cable 
allowing flexion/extension

a 2 DoFs trapezo-metacarpal joint at the base of 
the palm allowing thumb opposition movement 
(adduction/abduction) towards the other 2 fingers

Weight: about 400gr
Dimension: similar to the human hand

Performances
trapezo-metacarpal thumb joint 
abduction/adduction range: 0°-120°
finger joints flexion range: 0-90°
load weight: 450 gr
grasping force: 40 N
tip to tip force: 15 N
closing time: 2 sec.

The hand

Proprioception

On/off contact 
sensors

Position 
sensors
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Outline of the talk
Objective of the work: to simplify the control 
of goal-oriented reaching for robotic arms by
taking inspiration from neuroscience
Proposed model: a self-organizing neural
controller
Implementation tools: Growing Neural Gas 
Networks
Experimental trials and results
Conclusions
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Addressed Problem

To develop a control module that
receives in input a target 3D position 
and provides in output a command
sequence able to reach it

Target 3D Position
(Xt, Yt, Zt) ARM{(J0i, …,J7i)}?

Motor 
Command
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Based on mathematical computational models such as inverse transform or 
iterative methods
Drawbacks (especially when the number of DOF increases):
• Inverse transform does not always guarantee a closed-form solution 
(numerical problems – matrix inversion)
• Iterative methods may not converge and may be computationally expensive

Both of the forms are generally rigid and do not account for uncontrollable 
variables such as manufacture tolerances, calibration error, and wear

Traditional solutions

Kinematic inversion
Ramdane-Cherif, A.; Daachi, B.; Benallegue, A.; Levy, N.;
Intelligent Robots and System, 2002. IEEE/RSJ International Conference on
Volume 2, 30 Sept.-5 Oct. 2002 Page(s):1904 - 1909 vol.2

Inverse kinematic at acceleration level using neural network
Ramdane-Cherif, A.; Perdereau, V.; Drouin, M.;
Neural Networks, 1995. Proceedings., IEEE International Conference on
Volume 5, 27 Nov.-1 Dec. 1995 Page(s):2370 - 2374 vol.5
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Neural models

• no a priori knowledge on kinematic and 
mechanical structure is required (e.g. link length, 
link structure)

• learning capability, to develop an internal model 
that builds such knowledge 

• low computational complexity
• human-like flexibility, robustness, generalization

Proposed approach
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Motor 
Position 

Map

A good starting point: the 
DIRECT model

Spatial
Position 

Map

Integration
Map

r x

a

The proposed model

hand effector position, 
target direction

Integration
area

Current position

Motor area
Bullock, D., Grossberg, S., Guenther, F. H. (1993). “A self-organizing
neural model of motor equivalent reaching and tool use by a 
multijoint arm.” Journal of Cognitive Neuroscience, 5, 408-435.
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The proposed neural model

Spatial
Position Map

Motor 
Position Map

Integration
Map

Visual Feedback

r

a

x

Endogenous Random
Generator

Motor command

Antagonist pairs

Sensory-Motor Map

Proprioceptive
Feedback

Motor Area
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Integration
Map

agonist

Each joint is actuated by simulating a pair
of agonist-antagonist muscles, including a 
spring-like mechanism

antagonist

spring-like
contribution

qi

Low level arm
controller

The Integration Map (IM) has two-fold
functionality:

Sensory: it combines different information
Motor: it provides an activation pattern of 

cells (r) in order to perform a movement in 
a given direction
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Implementation tools:
Growing Neural Gas Networks

p input
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Updating rules:

Unsupervised learning
Competitive learning (winner-takes-all)
Topology-preserving mapping from the 
input space onto a topological structure 
of equal or lower dimension
Network topology is unconstrained
Competitive Hebbian learning and 
connection aging are also used to
generate the topology
Growth mechanism (the network size
need not be predefined) 
The growth process can be interruped
when a user defined performance 
criterion has been fulfilled

Bernd Fritzke, “Growing Cell Structures - A Self-organizing Network for Unsupervised and 
Supervised Learning”. ICSI TR-93-026, 1993.  Neural Networks 7(9):1441-1460, 1994a
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Experimental setup
Manipulators: 

2D Simulator – 3 d.o.f
DEXTER arm – 8 d.o.f.
PUMA560 arm – 6 d.o.f

A simulator vision system:
by direct kinematics

Training phase (motor babbling):
by autonomously generated repetitions of an action-perception
loop

Testing:
Reaching a given target point:

in normal condition
with a tool
with clamped joint
vision distortion
blind reaching
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3 planar joints

Experimental results: 2D simulator

Graphical interface
Lengths ranges:
L1= 280 mm L2= 280 mm L3= 160 mm

Angle ranges:
30° ≤ Θ1 ≤ 240° 30° ≤ Θ2 ≤ 180° 30° ≤ Θ3 ≤ 190°
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2D simulation:
Normal reaching
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graph of the error distance
between the end-effector and the 
target: monotonic trend

the joint trajectories in a normal
reaching task: no oscillations

 Visual
Map 

Postural
Map 

Sensory 
Motor Map

Our model 2369 1333 3357 
DIRECT 
model _ 15625 10290 

 

Cardinality of the obtained maps

Experimental results:
2D simulator
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Human-like flexibility and robustness in reaching
tasks provided by the model

The model, after learning occurs, produces linear end-effector trajectories 
and human-like movement behaviors such as:
reaching with a tool

adding a tool of variable length at the end of last link
clamped joint

reaching tasks with a clamped joint
vision distortion

using a prism that allows a visual shift
blind reaching

reaching without using any visual feedback

without additional learning, or corrective movements
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Experimental results: 2D 
simulation - Reaching with a tool
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Experimental results: 2D 
simulation - Clamped joint
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Experimental results: 2D 
simulation - Visual shift
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Experimental results: 2D 
simulation - blind reaching
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Experimental results:
Dexter Arm

8-d.o.f. anthropomorphic redundant robot arm, composed of trunk, 
shoulder, elbow and wrist
mechanically coupled structure: the mechanical transmission system is 
realized with pulleys and steel cables
main characteristics: reduced accuracy,lighter  mechanical structure, safe 
and intrinsically compliant structure

D.o.f.: 8
Velocity: 0.2 m/s
Workspace: 1200 mm x 350°
Repeatability: + 1mm
Weight: 40 Kg
Payload: 2 Kg
Power: 24V DC
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The Dexter Arm
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Simulation of the vision 
system

Direct kinematics allows to calculate
the spatial position of the  end effector 
position and of the target point 
expressed in the arm reference frame.

Gaussian noise is added to the visual 
input simulating unstructured
environmental conditions.

Z

X

Y. (X,Y, Z)
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Training phase

Through endogenous arm movements, the system 
generates the associative information needed to build the 
transformation between a spatial map (which encodes
spatial directions) and a motor map (which encodes joint
rotations)
Use of direct kinematics of the arm in order to determine
the end effector position in the arm reference system
20,511 random movements in the joint space (= number
of iterations)
The GNG map cardinality was 6,883 units
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Testing phase
After the training phase, given a target 3D point the system provides
the joint rotations that drives the current end effector position in the 
target point
Five different modalities:

1. normal reaching
without any constraint

2. reaching with a tool
adding a tool of variable length at the end of last link

3. reaching with a clamped joint
reaching tasks with a clamped joint

4. reaching with vision distortion
using a prism that allows a visual shift

5. blind reaching
reaching without using any visual feedback

All trials have been executed without additional learning
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Experimental results on the 
DEXTER robotic arm
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Experimental results on the 
DEXTER robotic arm

Joint trajectories

Distance of the end effector position 
and of its position from straight

line trajectory
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Experimental results on the 
DEXTER robotic arm



33

Experimental results on the 
DEXTER robotic arm

CLAMPED REACHING
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Visual 
feedback

Experimental results on the 
DEXTER robotic arm

BLIND REACHING
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Experimental results on the 
DEXTER robotic arm

Visual 
feedback
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Experimental results on PUMA 
562 robotic arm
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Experimental results on the 
PUMA 562 robotic arm

Distance of the end effector position 
and of its position from straight

line trajectory
Joint trajectories
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Experimental results: 
real robots

Pentium IV (1.8 GHz)

A is the input data set
ξ is the pattern in input, 

is the reference vector associated to winner unit

Mean Quantization Error (MQE)

1sw
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Application of the same approach to
different robotic systems

G. Asuni, Leoni F., Starita A., Guglielmelli E., Dario P., “A Neuro-controller for Robot Arms 
Based on Biologically-Inspired Visuo-Motor Coordination Neural Models”, The 1st 
International IEEE EMBS Conference on Neural Engineering, 20 - 22 March, 2003, Capri 
Island, Italy.

G. Asuni, G. Teti, C. Laschi, E. Guglielmelli, P. Dario, “A Robotic Head Neuro-controller on 
Biologically-Inspired Neural Models”, IEEE International Conference on Robotics and 
Automation April 18-22, 2005, Barcelona, Spain

E.Guglielmelli G. Asuni, F. Leoni, A. Starita, P. Dario, “A Neuro-controller for Robot Arms 
Based on Biologically-Inspired Visuo-Motor Co-ordination Neural Models”, IEEE Handbook of 
Neural Engineering, M. Akay (Ed.), IEEE Press, in press (2005). 
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Addressed Problem

To develop a control module that
receives in input a target gaze position 
and provides in output a command
sequence able to reach it 

Z

X

Y

. (Xg,Yg, Zg)

Target Gaze Fixation
Point Position
(Xt, Yt, Zt) HEAD{(J0i, …,J6i)}?

Motor 
Command
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The proposed neural model

Spatial 
Position Map

Motor 
Position Map

Integration 
Map

Proprioceptive Feedback

Gaze Fixation 
Point

r

a

x

Endogenous Random 
Generator

Motor command

Antagonist pairs 

Motor Area
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Testing phase
After the training phase, given a target fixation point the 
system provides the joint rotations that drives the 
current gaze fixation point in the target point

Three different modalities:
1. Normal (without any constraint)
2. With a clamped joint 0
3. With symmetric angles for eye joints

All trials have been executed without additional learning
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Initial posture

Experimental results:
normal gazing

Final posture (normal)
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Experimental results:
gazing with a clamped joint

Final posture (clamped joint 0)

Axis 0, 
Lower Pitch

Final posture in normal mode
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Experimental results:
gazing with symmetric eye angles

Final posture in normal mode Final posture with symmetric
angles for eye joints
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Portability

To allow the portability from a robot system to 
another it is only needed to:

change the number of d.o.f.

for each d.o.f., provide its range of 
variability 
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Future work

Implementation of continuous learning
mechanisms

Development of an integrated system 
for the control of the whole upper-body 
robotic system
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Conclusions
A basic control scheme for the control of a robotic arm with 8 DOF has 
been proposed

Growing Neural Gas networks have been used to implement the model

With no knowledge about the robotic arm kinematics, after a learning 
phase, the robot is able to reaching points in the 3D space

The robot can reach a target point even with additional constraints (e.g. 
some joints blocked) without additional learning phases

The neural model has a potential to be able to control different complex 
robotic systems with no modifications to the model nor to the learning 
equations


