
  

 

 

MIRROR 

IST–2000-28159 
Mirror Neurons based Object Recognition 

 

 

 

Deliverable Item 2.3 
Visual Primitives for Object Identification 

 
Delivery Date: May, 2002 
Classification: Internal 
Responsible Person:  Prof. José Santos-Victor – Instituto Superior Técnico (IST) 
Partners Contributed:  Alexandre Bernardino, Manuel Lopes (IST) 
Short Description: This deliverable describes the visual primitives developed for being 
implemented in the experimental artifact. In more detail, this deliverable describes:  
i) a methodology developed for computing the view point transformation between the 

artifact’s own arm and the demonstrators when performing imitation. Even if this is a high 
level behavior that exceeds the scope, it also includes processes for hand/arm 
segmentation in video sequences.  

ii) an approach for the computation of 3D dense depth maps from binocular disparity 
channels using log-polar images; 

iii) low-level processes and software for extracting image corners and compute the normal 
flow from image sequences;  

These visual primitives will be integrated in the final artifact for conducting experiments on 
learning and imitation at a later stage of the project.  
 
 
 

 

 

Project funded by the European Community 
under the “Information Society 
Technologies” Programme (1998-2002) 

 

 



IST-2000-28159 (MIRROR)                                         October 30, 2002
 

Deliverable 2.3 1

 
Content list 

 
1. Introduction ..................................................................................................................... 2 
2. Viewpoint Transformation and hand/harm segmentation................................................ 2 
3. Dense depth maps from binocular disparity channels .................................................... 3 
4. Low-level image primitives .............................................................................................. 4 
5. ANNEXES ....................................................................................................................... 5 



IST-2000-28159 (MIRROR)                                         October 30, 2002
 

Deliverable 2.3 2

1. Introduction 
The visual primitives described in this deliverable have been developed for different levels of 
application in the project, ranging from low-level feature extraction, including medium level 
3D processing and figure-ground segmentation to the visual transformations involved in 
imitation and the required image processing tools for segmenting one’s arm/hand in an 
image/video sequence. 
Section 2 is devoted to the problem of imitating harm/hand gestures. One of the aspects 
considered is that of the Visual Transformation between the self-image when looking at 
one’s arm or that observed when looking at someone else’s body. In addition it describes the 
visual processing designed for segmenting one’s arm/hand in an image. 
Section 3 details how a 3D dense depth map can be obtained by utilizing a set of disparity 
channels computed from log-polar images. Section 4, describes briefly the low-level feature 
extraction processes that have been designed.  
It is of course expected that these Visual Primitives will evolve throughout the duration of the 
project either through adaptation to experimental needs or by including new Visual Primitives 
as necessary. 
 

2. Viewpoint Transformation and hand/harm segmentation 
We have studied the overall problem of endowing an artifact with the capability to imitate 
someone’s gestures. Even if imitation is a high-level capability we describe this work in this 
report. The architecture is composed of two main blocks: a Sensory-Motor Map (SMM) and a 
View-Point Transformation (VPT) module. 
The sensory-motor map relates images of the arm to the required forces (or arm joint 

angles) that produce such an image 
configuration of the arm. It thus involves not 
only the arm (inverse) kinematics but also the 
camera geometry. It is learned during an initial 
stage where the robot performs random arm 
movements and uses the image observations 
to estimate the sensory-motor transformation. 
Once the SMM has been learned, the artifact is 
in theory able to generate the necessary arm 
torques or joint configurations to place the arm 
at a certain image posture. 
The SMM alone is not sufficient to allow the  
artifact to imitate the demonstrator’s gestures. 
In fact, the demonstrator gestures are imaged 
in a different position when compared to the 
artifact’s own arm, when performing the same 
gesture. This is illustrated in the figure on the 
left side, where both the arm of a teacher and 
that of a student perform similar gestures but 
they are perceived in very different image  
configurations, due to perspective. 
There is thus the need to transform the image 
of the demonstrator’s arm to a new 
configuration that corresponds to the image 
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that the artifact would observe if its own arm were performing that same gesture. We refer to 
this process as the View Point transformation. Different classes of VPTs can be used 
depending on the task. The transformation can reproduce the full 3D transformation to align 
the demonstrator and the artifact’s bodies. However, in some other cases simpler geometric 
transformations suffice and this fact is vastly illustrated in experiments conducted with 
children or infants.  
Once the SMM and VPT have been defined and implemented, the system is able to observe 
the gestures of a demonstrator, transform the observed image to the so-called allo-image, as 
if observing its own arm and finally perform the gesture.  In the example of the figure, the 
View Point Transformation would align the images of the teacher’s arm and that of the 
student. 
Another relevant aspect for the scope of this deliverable is the segmentation of the hand/arm 
of a demonstrator from images, as shown in the figure below. 
 

 
 
The process proposed is based on a colour segmentation scheme which is trained to 
distinguish skin-colour from other objects. Morphological filtering is applied to select large 
skin-coloured blobs. After normalization with respect to size and orientation, the extracted 
hand images are used in a classification methodology to recognize hand gestures.  Even 
though encouraging results have been produced in real-time, additional work is needed to 
improve accuracy and robustness. 
Details of the entire methodology and experimental results are described in ANNEX I of this 
deliverable. 
 

3. Dense depth maps from binocular disparity channels 
 

Foveation and stereopsis are important features on active vision systems. The former 
provides a wide field of view and high foveal resolution with low amounts of data, while the 
latter contributes to the acquisition of close range depth cues. The log-polar sampling has 
been proposed as an approximation to the foveated representation of the primate visual 
system. Although the huge amount of stereo algorithms proposed in the literature for 
conventional imaging geometries, very few are shown to work with foveated images sampled 
according to the log-polar transformation.  
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We have developed a method to extract dense disparity maps in real-time from a pair of log-
mapped images, with direct application to active vision systems both for tracking or figure 
ground segmentation. 
 
The method we propose uses the gray/color values of each pixel directly, without requiring 
any further feature extraction, making this method particularly suited for non-cartesian 
geometries, where the scale of analysis depends greatly on the variable to estimate 
(disparity). The fact that we obtain dense information has makes it suitable for object 
segmentation and region of interest selection. 
 
The method starts by assuming a set of disparity hypotheses (mainly horizontal) and a 
probabilistic formulation is settled to determine the probability of observing a given disparity 
value at a given pixel subject to a disparity prior. The multiple hypotheses are then combined 
and the MAP estimate of the disparity computed.  
 
There are inhibition links between different disparity channels for the same pixel (i.e. one 
pixel can only have one disparity value) and reinforcement between similar disparity values 
associated to neighbouring pixels. Since the MAP is only computed after these processes, 
the resulting disparity field preserves depth discontinuities, thus being very appropriate for 
figure-ground segmentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The picture above shows an example of one of the input images and the estimated disparity 
map. A detailed description and experimental results are included in ANNEX II. 
 
 

4. Low-level image primitives 
 

The following Visual Primitives acting at the lower level of the processing chain of the final 
system have been developed: 

 

Log-Polar Mapping ActiveX Object   (v2.0,  2002-10-25)   - Allow to map Cartesian images to 
log-polar geometry. Various parameters of the log-polar map can be set using 
this software. 
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Corner Detection ActiveX Object   (v1.1,  2002-01-08)   - Extracts corners from images. The 
process is based on the Harris corner detector. It starts by computing the matrix 
of second derivatives of the image (Hessian) and the lowest eigenvalue is 
selected to indicate the lowest spatial curvature of the image patch. This value 
must be above a threshold for the feature extractor to select a certain point. 

 
Corner Tracker ActiveX Object   (v1.1, 2002-01-08) – Using the previous corner detector, 

this module tracks a corner over an image sequence by applying thewell-know 
Lucas-Kanade tracking algorithm. The algorithm is based on a first order 
approximation of an image pair and the optimal disparity is computed in a least-
squares sense.  

 
Normal Flow ActiveX Object   (v1.0, 2002-03-28) – The normal flow corresponds to the 

projection of image motion on the direction of the image spatial gradient. It 
consists of the unique component of the image motion that can be computed 
locally, due to the well-known aperture problem. The normal flow is computed 
from spatio-temporal image derivatives.  

 
Log-Polar Warping ActiveX Object   (v2.0,  2002-10-25)   - This software is an 

implementation of the process described in Section 3 of this deliverable. A set 
of disparity hypotheses are used to generate warped versions of log-polar 
images that are used in a probabilistic framework to obtain a dense disparity 
map of the observed scene. 

 
 
 
 

5. ANNEXES 
 
 
I - Visual Transformations in Gesture Imitation 
II - A Binocular Stereo Algorithm for Log-polar Foveated Systems 
 
 



Visual Transformations in Gesture Imitation:

what you see is what you do

Manuel Cabido Lopes José Santos-Victor

Instituto de Sistemas e Robótica
Instituto Superior Técnico

Lisbon, Portugal
{macl,jasv}@isr.ist.utl.pt

Abstract

We propose an approach for a robot to imitate the ges-
tures of a human demonstrator. Our framework con-
sists solely of two components: a Sensory-Motor Map
(SMM) and a View-Point Transformation (VPT). The
SMM establishes an association between an arm image
and the corresponding joint angles and it is learned by
the system during a period of observation of its own ges-
tures. The VPT is widely discussed in the psychology
of visual perception and is used to transform the image
of the demonstrator’s arm to the so-called ego-centric
image, as if the robot were observing its own arm. Dif-
ferent structures of the SMM and VPT are proposed in
accordance with observations in human imitation. The
whole system relies on monocular visual information
and leads to a parsimonious architecture for learning
by imitation. Real-time results are presented and dis-
cussed.

1 Introduction

The impressive advance of research and develop-
ment in robotics and autonomous systems in the
past years has led to the development of robotic
systems of increasing motor, perceptual and cogni-
tive capabilities.

These achievements are opening the way for new
application opportunities that will require these
systems to interact with other robots or non tech-
nical users during extended periods of time. Tra-
ditional programming methodologies and robot in-
terfaces will no longer suffice, as the system needs
to learn to execute complex tasks and improve its
performance through its lifetime.

Our work has the long-term goal of building so-
phisticated robotic systems able to interact with
humans or other robots in a natural and intuitive
way. One promising approach relies on imitation
whereby a robot could learn how to handle a per-
son’s private objects by observing the owner’s be-
havior, over time.

Learning by imitation is not a new topic and
has been addressed before in the literature. This
learning paradigm has already been pursued in hu-

manoid robotic applications [1] where the number
of degrees of freedom is very large, tele-operation [2]
or assembly tasks [3]. Most published works, how-
ever, describe complete imitation systems but focus
their attention on isolated system components only,
while we describe a complete architecture.

We will concentrate on the simplest form of im-
itation that consists in replicating the gestures or
movements of a demonstrator, without seeking to
understand the gestures or the action’s goal. In
the work described in [4], the imitator can not only
replicate the gestures but also the dynamics of a
demonstrator, but it requires the usage of an ex-
oskeleton to sense the demonstrator’s behavior. In-
stead, our approach is exclusively based on vision.

The motivation to use visual information for im-
itation arises from the fact that many living be-
ings - like humans - resort to vision to solve an
extremely large set of tasks. Also, from the en-
gineering point view, video cameras are low-cost,
non invasive devices that can be installed in ordi-
nary houses and that provide an enormous quantity
of information, specially if combined with domain
knowledge or stereo data.

Interestingly, the process of imitation seems to
be the primary learning process used by infants and
monkeys during the first years of life. Recently, the
discovery of the mirror neurons in the monkey’s
brain [5, 6] has raised new hypotheses and provided
a better understanding of the process of imitation
in nature. These neurons are activated both when a
monkey performs a certain action and when it sees
the same action being performed by a demonstrator
or another monkey.

Even if the role of these neurons is not yet fully
understood, a few important conclusions can nev-
ertheless be drawn. Firstly, mirror neurons clearly
illustrate the intimate relationship between percep-
tion and action. Secondly, these neurons exhibit
the remarkable ability of ”recognizing” certain ges-
tures or actions when seen from very different per-
spectives (associating gestures performed by the
demonstrator to the subject’s own gestures).

jasv
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One of the main contributions of this paper is
related to this last observation, that is illustrated
in Figure 1. We propose a method that allows the
system to “rotate” the image of gestures done by
a demonstrator (allo-image) to the corresponding
image (ego-image) that would be obtained if those
same gestures were actually performed by the sys-
tem itself. We call this process the View-Point
Transformation (VPT). Surprisingly, in spite of the
importance given to the VPT in psychological stud-
ies [7], it has received very little attention from
other researchers in the field of visual imitation.

Figure 1: Gestures can be seen from very dis-
tinct perspectives. The image shows one’s own arm
performing a gesture (ego-image) and that of the
demonstrator performing a similar gesture (allo-
image).

One of the few works that dealt explicitly with
the VPT is [8]. However, instead of considering
the complete arm posture, only the mapping of the
end-effector position is done. The map between
the allo and ego image is performed using epipolar
geometry, based on a stereo camera pair.

Other studies addressed this problem in an im-
plicit and superficially way. A mobile robot capable
of learning the policy followed by another mobile
vehicle is described in [9]. Since the system kine-
matics is very simple, the VPT corresponds to a
transformation between the views of the two mobile
robots. This is achieved in practice by delaying the
imitator’s perception until it reaches the same place
as the demonstrator, without focusing the process
of VPT. The work described in [10] has similar ob-
jectives to our own research and allows a robot to
mimic the “dance” of an Avatar. However, it does
not address the VPT at all, and a special invasive
hardware was used to perform this transformation.
Instead, we present a simple architecture for im-
itation which carefully addresses the fundamental
process of View-Point Transformation.

The VPT allows the robot to map observed
gestures to a canonical point-of-view. The final

step consists in transforming these mapped features
to motor commands, which is referred to as the
Sensory-Motor Map (SMM). Our complete archi-
tecture for imitation is shown in Fig. 2.

Figure 2: The combination of the Sensory-Motor
Map and the View-Point Transformation allow the
robot to imitate the arm movements executed by
another robot or human.

The Sensory-Motor Map can be computed explic-
itly if the parameters of the arm-hand-eye configu-
ration are known a priori but - more interestingly
- it can be learned from observations of arm/hand
motions. Again, biology can provide relevant in-
sight. The Asymmetric Tonic Neck reflex [11] forces
newborns to look to their hands, which allows them
to learn the relationship between motor actions and
the corresponding visual stimuli.

Similarly, in our work the robot learns the SMM
during an initial period of self-observation, while
performing hand/arm movements. Once the SMM
has been estimated, the robot can observe a demon-
strator, use the VPT to transform the image fea-
tures to a canonical reference frame and map these
features to motor commands through the SMM.
The final result will be a posture similar to that
observed.

Structure of the paper
In Section 2, we present the models used

throughout this work, namely the arm kinematics
and the camera/eye geometry. Section 3 is devoted
to the definition and estimation of the Sensory-
Motor Map. In Section 4 we describe how the
system performs the View-Point Transformation.
In Section 5 we show how to use these elementary
blocks to perform imitation and present experimen-
tal results. In Section 6, we draw some conclusions
and establish directions for future work.

2 Modeling

Throughout the paper we consider a robotic system
consisting of a computer simulating an antropomor-
phic arm and equipped with a real web camera.
This section presents the models used for the cam-
era and robot body.
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2.1 Body/arm kinematics

The anthropomorphic arm is modeled as an articu-
lated link system. Fig. 3 shows the four arm links:
L1 - forearm, L2 - upper arm, L3 - shoulder width
and L4 - body height.

Figure 3: Kinematic model of the human arm.

It is further assumed that the relative sizes of
these links are known, e.g. from biometric mea-
surements: L1 = L2 = 1, L3 = 1.25 and L4 = 2.5.

2.2 Camera/eye geometry

An image is a projection of the 3D world whereby
depth information is lost. In our case, we will re-
trieve depth information from a single image by
using knowledge about the body links and a sim-
plified, orthographic camera model.

We use the scaled orthographic projection model
that assumes that the image is obtained by pro-
jecting all points along parallel lines plus a scale
factor. Interestingly, such approximation may have
some biological grounding taking into account the
scale-compensation effect in the human vision [12]
whereby we normalize the sizes of known objects
irrespective to their distances to the eye.

Let M = [X Y Z]T denote a 3D point expressed
in the camera coordinate frame. Then, with an
orthographic camera model, M is projected onto
m = [u v]T , according to:

m = PM[
u
v

]
= s

[
1 0 0
0 1 0

] X
Y
Z


 (1)

where s is a scale factor that can be estimated plac-
ing a segment with size L fronto-parallel to the
camera and measuring the image size l(s = l/L).

For simplification, we assume that the camera
axis is positioned in the imitator’s right shoulder
with the optical axis pointing forward horizontally.
With this specification of the camera pose, there is

no need for an additional arm-eye coordinate trans-
formation in Equation (1).

3 Sensory-Motor Map

The Sensory-Motor Map (SMM) defines a corre-
spondence between perception and action. It can
be interpreted in terms of forward/inverse kinemat-
ics for the case of robotic manipulators. The SMM
can be used to predict the image resulting from
moving one’s arm to a certain posture. In our case,
the SMM will allow the system to determine the
arm’s joint angles that correspond to a given im-
age configuration of the arm.

In the context of imitation, the SMM can be used
with different levels of ambiguity/completeness. In
some cases, one wants to replicate exactly someone
else’s gestures, considering all the joint angles. In
some other cases, however, we may want to imitate
the hand pose only, while the position of the elbow
or the rest of the arm configuration is irrelevant.
To encompass these possibilities, we have consid-
ered two cases: the full arm SMM and the free-
elbow SMM that will be described in the following
sections. Finally we describe how the system can
learn the SMM during a period of self-observation.

3.1 Full-Arm SMM

We denote the elbow and wrist image coordinates
by me and mw, the forearm and upper arm image
length by l1 and l2 and θi=1..4, the various joint
angles. We then have:

[θ1, · · · , θ4] = F1(me,mw, l1, l2, L1, L2, s)

where F1(.) denotes the SMM, L2/L1 represents
the (known) length of the upper/forearm and s is
the camera scale factor.

The computation of this function can be done in
successive steps, where the angles of the shoulder
joint are determined first and used in a later stage
to simplify the calculation of the elbow joint’s an-
gles.

The inputs to the SMM consist of features ex-
tracted from the image points of the shoulder, el-
bow and wrist; the outputs are the angular posi-
tions of every joint. The shoulder pan and eleva-
tion angles, θ1 and θ2 can be readily obtained from
image data as:

θ1 = f1(me) = arctan(ve/ue)
θ2 = f2(l2, L2, s) = arccos(l2/sL2)

Once the system has extracted the shoulder an-
gles, the process is repeated for the elbow. Before
computing this second set of joint angles, the image
features undergo a set of transformations so as to
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compensate the rotation of the shoulder:[
u′

w

v′
w

ξ

]
= Rzy(θ1, θ2)




 uw

vw√
s2L2

1 − l21


−

[
ue

ve

0

]
(2)

where ξ is not used in the remaining computations
and Rzy(θ1, θ2) denotes a rotation of θ1 around the
z axis followed by a rotation of θ2 around the y
axis.

With the transformed coordinates of the wrist
we can finally extract the remaining joint angles,
θ3 and θ4:

θ3 = f3(m′
w) = arctan(v′w/u′

w)
θ4 = f4(m′

w, L1, s) = arccos(l′1/sL1)

The approach just described allows the system
to determine the joint angles corresponding to a
certain image configuration of the arm. In the next
section, we will address the case where the elbow
joint is allowed to vary freely.

3.2 Free-Elbow SMM

The free-elbow SMM is used to generate a given
hand position, while the elbow is left free to reach
different configurations. The input features con-
sist of the hand image coordinates and the depth
between the shoulder and the hand.

[θ1, θ2, θ4] = F2(mw,rdZw, L1, L2, s)

The elbow joint, θ3, is set to a comfortable po-
sition. This is done in an iterative process aiming
at maintaining the joint positions as far as possible
from their limit values. The optimal elbow angle
position, θ̂3 is chosen to maximize:

θ̂3 = arg max
θ3

∑
i

(θi − θlimits
i )2

while the other angles can be calculated from the
arm features. Again, the estimation process can be
done sequentially, each joint being used to estimate
the next one:

θ4 = arcsin
(

rx2
h +ry2

h +rz2
h

2
− 1
)

θ1 = 2 arctan

(
b1 −

√
b2
1 + a2

1 − c2
1

a1 + c1

)

θ2 = 2 arctan

(
b2 −

√
b2
2 + a2

2 − c2
2

a2 + c2

)
+ π

where the following constants have been used:

a1 = sin θ4 + 1
b1 = cos θ3 cos θ4

c1 = −ryh

a2 = cos θ4 cos θ2 cos θ3 − sin θ2(1 + sin θ4)
b2 = − cos θ4 sin θ3

c2 = rxh

3.3 Learning the SMM

In the previous sections we have derived the expres-
sions of the full-arm and free-elbow SMMs. How-
ever, rather than coding these expressions directly
we adopted a learning approach whereby the sys-
tem learns the SMM by performing arm movements
and observing the effect on the image plane.

The computation of the SMM can be done se-
quentially: estimating the first angle, which is then
used in the computation of the following angle and
so forth. This fact allows the system to learn the
SMM as a sequence of smaller learning problems.

This approach has strong resemblance to the de-
velopment of sensory-motor coordination in new-
borns and young infants, which starts by simple
motions that get more and more elaborate as in-
fants acquire a better control over motor coordina-
tion.

In all cases, we use a Multi-Layer Perceptron
(MLP) to learn the SMM, i.e. to approximate
functions fi,i=1..4. Table 1 presents the learning
error and illustrates the good performance of our
approach for estimating the SMM.

θ1 θ2 θ3 θ4

3.6e−2 3.6e−2 3.6 3.6

Table 1: Mean squared error (in deg.2) for the each
joint in the full-arm SMM

Ideas about development can be further ex-
ploited in this construction. Starting from simpler
cases, de-coupling several degrees of freedom, inter-
leaving perception with action learning cycles are
developmental “techniques” found in biological sys-
tems.

4 View-Point Transformation

A certain arm gesture can be seen from very differ-
ent perspectives depending on whether the gesture
is performed by the robot (self-observation) or by
the demonstrator.

One can thus consider two distinct images: the
ego-centric image, Ia, during self-observation and
the allo-centric image, Ie, when looking at other
robots/people. The View-Point Transformation
(VPT) has the role of aligning the allo-centric im-
age of the demonstrator’s arm, with the ego-centric
image, as if the system were observing its own arm.

The precise structure of the VPT is related to the
ultimate meaning of imitation. Experiments in psy-
chology show that imitation tasks can be ambigu-
ous. In some cases, humans imitate only partially
the gestures of a demonstrator (e.g. replicating the
hand pose but having a different arm configuration,
as in sign language), use a different arm or execute
gestures with distinct absolute orientations [13]. In
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some other cases, the goal consists in mimicking
someone else’s gestures as completely as possible,
as when performing dancing or dismounting a com-
plex mechanical part.

According to the structure of the chosen VPT, a
class of imitation behaviors can be generated. We
consider two different cases. In the first case - 3D
VPT - a complete three-dimensional imitation is
intended. In the second case - 2D VPT - the goal
consists in achieving coherence only in the image,
even if the arm pose might be different. Depend-
ing on the desired level of coherence (2D/3D) the
corresponding (2D/3D) VPT allows the robot to
transform the image of an observed gesture to an
equivalent image as if the gesture were executed by
the robot itself.

4.1 3D View-Point Transformation

In this approach we explicitly reconstruct the pos-
ture of the observed arm in 3D and use fixed points
(shoulders and hip) to determine the rigid transfor-
mation that aligns the allo-centric and ego-centric
image features: We then have:

Ie = P T Rec(Ia) = V PT (Ia)

where T is a 3D rigid transformation and Rec(Ia)
stands for the 3D reconstruction of the arm posture
from allo-centric image features. Posture recon-
struction and the computation of T are presented
in the following sections.

4.1.1 Posture reconstruction

To reconstruct the 3D posture of the observed arm,
we will follow the approach suggested in [14], based
on the orthographic camera and articulated arm
models presented in Section 2.

Let M1 and M2 be the 3D endpoints of an arm-
link whose image projections are denoted by m1

and m2. Under orthography, the X,Y coordinates
are readily computed from image coordinates (sim-
ple scale). The depth variation, dZ = Z1 −Z2, can
be determined as:

dZ = ±
√

L2 − l2

s2

where L = ‖M1 − M2‖ and l = ‖m1 − m2‖.
If the camera scale factor s is not known before-

hand, one can use a different value provided that
the following constraint, involving the relative sizes
of the arm links, is met:

s ≥ max
i

li
Li

i = 1..4 (3)

Fig. 4 illustrates results of the reconstruction
procedure. It shows an image of an arm gesture
and the corresponding 3D reconstruction, achieved

 Arm x

y

z

Figure 4: Left: Reconstructed arm posture. Right:
Original view.

with a single view and considering that s and the
arm links proportions were known.

With this method there is an ambiguity in the
sign of dZ. We overcome this problem by restrict-
ing the working volume of the arm. In the future,
we will further address this problem and several ap-
proaches may be used: (i) optimization techniques
to fit the arm kinematic model to the image; (ii)
explore occlusions to determine which link is in the
foreground; or (iii) use kinematics constraints to
prune possible arm configurations.

4.1.2 Rigid Transformation (T )

A 3D rigid transformation is defined by three an-
gles for the rotation and a translation vector. Since
the arm joints are moving, they cannot be used
as reference points. Instead, we consider the three
points in Fig. 3: left and right shoulders, (Mls,Mrs)
and hip, Mhip, with image projections denoted by
(mls,mrs,mhip). The transformation T is deter-
mined to translate and rotate these points until
they coincide with those of the system’s own body.

The translational component must place the
demonstrators right shoulder at the image origin
(which coincide’s with the system’s right shoulder)
and can be defined directly in image coordinates:

t = −amrs

After translating the image features directly, the
remaining steps consist in determining the rotation
angles to align the shoulder line and the shoulder-
hip contour. The angles of rotation along the z, y
and x axes, denoted by φ, θ and ψ are given by:

φ = arctan (vls/uls)
θ = arccos (uhip/L4)
ψ = arccos (vhip/L3)

Hence, by performing the image translation first
and the 3D rotation described in this section, we
complete the process of aligning the image projec-
tions of the shoulders and hip to the ego-centric
image coordinates.

4.2 2D View-Point Transformation

The 2D VPT is used when one is not interested in
imitating the depth variations of a certain move-
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ment, alleviating the need for a full 3D transfor-
mation. It can also be seen as a simplification of
the 3D VPT if one assumes that the observed arm
describes a fronto-parallel movement with respect
to the camera.

The 2D VPT performs an image translation to
align the shoulder of the demonstrator (ams) and
that of the system (at the image origin, by defini-
tion). The VPT can be written as:

V PT (am) =
[ −1 0

0 1

]
[am −ams] (4)

and is applied to the image projection of the
demonstrator’s hand or elbow, amh or ame.

Notice that when the arm used to imitate is the
same as the demonstrator, the imitated movement
is a mirror image of the original. If we use a simple
identity matrix in Equation (4) then the movement
will be correct. At the image level both the 2D and
3D VPTs have the same result but the 3D posture
of the arm is different in the two cases.

From the biological standpoint, the 2D VPT is
more plausible than the 3D version. In [13] several
imitation behaviors are presented which are not al-
ways faithful to the demonstrated gesture: some-
times, people do not care about usage of the cor-
rect hand, depth is irrelevant in some other cases,
movements can be reflections of the original ones,
etc. The 3D VPT might be more useful in indus-
trial facilities where gestures should be reproduced
as exactly as possible.

5 Experiments

We have implemented the modules discussed in the
previous sections to build a system able to learn by
imitation. In all the experiments, we use a web
camera to observe the demonstrator gestures and a
simulated robot arm to replicate those gestures.

We start by describing the approach used for
hand-tracking before presenting the overall results
of imitation. The position of the shoulder is as-
sumed to be fixed. In the following sections we
shall discuss about the procedures for doing imita-
tion.

5.1 Hand Color Segmentation

To find the hand in the image we use a color seg-
mentation scheme, implemented by a feed-forward
neural network with three neurons in the hidden
layer. As inputs we use the hue and saturation
channels of HSV color representation. The train-
ing data are obtained by selecting the hand and the
background in a sample image. After color classi-
fication a majority morphological operator is used.
The hand is identified as the largest blob found and
its position is estimated over time with a Kalman

filter. Figure 5 shows a typical result of this ap-
proach.

Figure 5: Skin color segmentation results.

5.2 Gesture Imitation

The first step to achieve imitation consists in train-
ing the system to learn the Sensory-Motor Map as
described in Section 3.3. This is accomplished by a
neural network that estimates the SMM while the
system performs a large number of arm movements.

The imitation process consists of the following
steps: (i) the system observes the demonstrator’s
arm movements; (ii) the VPT is used to transform
these image coordinates to the ego-image, as pro-
posed in Section 4 and (iii) the SMM generates the
adequate joint angle references to execute the same
arm movements.

Figure 6 shows experimental results obtained
with the 3D-VPT with the learned SMM (full-
arm). To assess the quality of the results, we over-
laid the images of the executed arm gestures (wire
frame) on those of the demonstrator. The figure
shows that the quality of imitation is very good.

Figure 7 shows results obtained in real-time
(about 5 Hz) when using the 2D VPT and the free-
elbow SMM. The goal of imitating the hand gesture
is well achieved but, as expected, there are differ-
ences in the configuration of the elbow, particularly
at more extreme positions.

These tests show that encouraging results can
be obtained with the proposed framework under
realistic conditions.

6 Conclusions and future
work

We have proposed an approach for learning by im-
itation that relies exclusively on visual information
provided by a single camera.

One of the main contributions is the View-Point
Transformation that performs a “mental rotation”
of the image of the demonstrator’s arm to the ego-
image, as if the system were observing its own arm.
In spite of the fundamental importance of the VPT
in visual perception and in the psychology of im-
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Figure 6: The quality of the results can be assessed
by the coincidence of the demonstrator gestures
and the result of imitation.

Figure 7: Family of solutions with different elbow
angles, while the hand is faithfully imitated.

itation [7], it has received little attention by re-
searchers in robotics.

We described two different VPTs needed for 3D
or 2D imitation. The View-Point Transformation
can have an additional interest to Mirror Neurons
studies, by providing a canonical frame of reference
that greatly simplifies the recognition of arm ges-
tures.

The observed actions are mapped into muscles
torques by the Sensory-Motor Map, that associates
image features to motor acts. Again two different
types of SMM are proposed, depending on whether
the task consists of imitating the entire arm or the
hand position only. The SMM is learned automat-
ically during a period of self-observation.

Experiments conducted to test the various sub-
systems have led to encouraging results, thus vali-
dating our approach to the problem.

Besides improvements on the feature detection
component using shape and kinematic data, future
work will focus on the the understanding of the task
goals to enhance the quality of imitation.
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Abstract. Foveation and stereopsis are important features on active vi-
sion systems. The former provides a wide field of view and high foveal
resolution with low amounts of data, while the latter contributes to the
acquisition of close range depth cues. The log-polar sampling has been
proposed as an approximation to the foveated representation of the pri-
mate visual system. Although the huge amount of stereo algorithms pro-
posed in the literature for conventional imaging geometries, very few are
shown to work with foveated images sampled according to the log-polar
transformation. In this paper we present a method to extract dense dis-
parity maps in real-time from a pair of log-mapped images, with direct
application to active vision systems.

1 Introduction

Stereoscopic vision is a fundamental perceptual capability both in animals and
artificial systems. At close ranges, it allows reliable extraction of depth informa-
tion, thus being suited for robotics tasks such as manipulation and navigation.
In the last decades a great amount of research has been directed to the prob-
lem of extracting depth information from stereo imagery (see [25] for a recent
review). However, the best performing techniques are still too slow to use on
robotic systems which demand real-time operation. The straightforward way to
reduce computation time is to work with coarse resolution images but this re-
stricts the acquisition of detailed information all over the visual field. A better
solution, inspired in biological systems, is the use of ocular movements together
with foveated retinas. The visual system of primates has a space-variant nature
where the resolution is high on the fovea (the center of the retina) and decreases
gradually to the periphery of the visual field. This distribution of resolution is
the evolutionary solution to reduce the amount of information traversing the op-
tical nerve while maintaining high resolution in the fovea and a wide visual field.
Moving the high resolution fovea we are able to acquire detailed representations
of the surrounding environment. The excellent performance of biological visual
systems led researchers to investigate the properties of foveated systems. Many
active vision systems have adopted this strategy and since foveated images con-
tain less information than conventional uniform resolution images, one obtains
important reductions on the computation time.
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We may distinguish between two main methods to emulate foveated sys-
tems, that we denote by multi-scale uniform sampling methods and non-uniform
sampling methods. Uniform methods preserve the cartesian geometry of the
representation by performing operations at different scales in multi-resolution
pyramids (e.g. [17],[10],[13]). Sampling grids are uniform at each level but dif-
ferent levels have different spacing and receptive field size. Notwithstanding,
image processing operations are still performed on piecewise uniform resolution
domains. Non-uniform methods resample the image with non-linear transfor-
mations, where receptive field spacing and size are non-uniform along the image
domain. The VR transform [2], the DIEM method [19], and several versions of
the logmap [30], are examples of this kind of methods.

The choice of method is a matter of preference, application dependent re-
quirements and computational resources. Uniform methods can be easier to work
with, because many current computer vision algorithms can be directly applied
to these representations. However, non-uniform methods can achieve more com-
pact image representations with consequent benefits in computation time. In
particular the logmap has been shown to have many additional properties like
rotation and scale invariance [31], easy computation of time-to-contact [28], im-
proved linear flow estimation [29], looming detection [23], increased stereo reso-
lution on verging systems [14], fast anisotropic diffusion [11], improved vergence
control and tracking [7, 3, 4].

Few approaches have been proposed to compute disparity maps for foveated
active vision systems, and existing ones rely on the foveated pyramid represen-
tation [17, 27, 6]. In this paper we describe a stereo algorithm to compute dense
disparity maps on logmap based systems. Dense representations are advanta-
geous for object segmentation and region of interest selection. Our method uses
directly the gray/color values of each pixel, without requiring any feature extrac-
tion, making this method particularly suited for non-cartesian geometries, where
the scale of analysis depends greatly on the variable to estimate (disparity).

To our knowledge, the only work to date addressing the computation of stereo
disparity in logmap images is [15]. In that work, disparity maps are obtained by
matching laplacian features in the two views (zero crossing), which results in
sparse disparity maps.

2 Real-Time Log-polar Mapping

The log-polar transformation, or logmap, l(x), is defined as a conformal mapping
from the cartesian plane x = (x, y) to the log-polar plane z = (ξ, η):

l(x) =
[
ξ
η

]
=

[
log(

√
x2 + y2)

arctan y
x

]
(1)

Since the logmap is a good approximation to the retino–cortical mapping in
the human visual system [26, 12], the cartesian and log-polar coordinates are
also called “retinal” and “cortical”, respectively. In continuous coordinates, a



cortical image Icort is obtained from the corresponding retinal image I by the
warping:

Icort(z) = I(l−1(x))

A number of ways have been proposed to discretize space variant maps [5]. We
have been using the logmap for some years in real-time active vision applications
[3, 4]. To allow real-time computation of logmap images we partition the retinal
plane into receptive fields, whose size and position correspond to a uniform parti-
tion of the cortical plane into super-pixels (see Fig. 1). The value of a super-pixel
is given by the average of all pixels in the corresponding receptive field.

Retinal Grid

x

y

Cortical Grid

ξ

η

Foveated Image

Fig. 1. The log-polar sampling scheme is implemented by averaging the pixels con-
tained within each of the receptive fields shown in the left image. These space-variant
receptive fields are angular sections of circular rings corresponding to uniform rectan-
gular super-pixels in the cortical image (center). To reconstruct the retinal image, each
receptive field gets the value of the corresponding super-pixel (right).

3 Disparity map computation

We start describing an intensity based method to find the likelihood of stereo
matches in usual cartesian coordinates, x = (x, y). Then we show how the
method can be extended to cope with logmap images. Finally we describe the
remaining steps to obtain the disparity maps.

Let I and I ′ be the left and right images, respectively. For depth analysis, we
are interested in computing the horizontal disparity map, but since we consider a
general head vergence configuration, vertical disparities must also be accounted
for. Therefore, disparity is a two valued function defined as d(x) = (dx, dy).
Taking the left image as the reference, the disparity at point x is given by
d(x) = x′ − x, where x and x′ are the locations of matching points in the left
and right images. If a pixel at location x in the reference image is not visible in the
right image, we say the pixel is occluded and disparity is undefined (d(x) = ∅).



3.1 Bayesian formulation

To obtain dense representations, we use an intensity based method similar to [32].
We formulate the problem in a discrete bayesian framework. Having a finite set
of possible disparities, D = {dn} , n = 1 · · ·N , for each location x we define a set
of hypothesis, H = {hn(x)} , n = 0 · · ·N , where h0(x) represents the occlusion
condition (d(x) = ∅), and the other hn represent particular disparity values,
d(x) = dn. Other working assumptions are the following:

1. Object appearance does not vary with view point (lambertian surfaces)
and cameras have the same gain, bias and noise levels. This corresponds to the
Brightness Constancy Assumption [16]. Considering the existence of additive
noise, we get the following stereo correspondence model:

I(x) = I ′(x + d(x)) + η(x) (2)

2. Noise is modeled as being independent and identically distributed with a
certain probability density function, f . In the unoccluded case, the probability
of a certain gray value I(x) is conditioned by the value of the true disparity d(x)
and the value of I ′ at position x + d(x):

Pr(I(x)|d(x)) = f(I(x)− I ′(x + d(x)))

We assume zero-mean gaussian white noise, and have f(t) = 1/
√

2πσ2e−t2/2σ2

where σ2 is the noise variance.
3. In the discrete case we define the disparity likelihood images as:

Ln(x) = Pr(I(x)|hn(x)) = f(I(x)− I ′n(x)) (3)

where I ′n(x) = I ′(x + dn) are called disparity warped images.
4. The probability of a certain hypothesis given the image gray levels (pos-

terior probability) is given by the Bayes’ rule:

Pr(hn|I) =
Pr(I|hn)Pr(hn)∑N
i=0 Pr(I|hi)Pr(hi)

(4)

where we have dropped the argument x since all functions are computed at the
same point.

5. If a pixel at location x is occluded in the right image, its gray level is
unconstrained and can have any value in the set of M admissible gray values,

Pr(I|h0(x)) =
1
M

(5)

We define a prior probability of occlusion with a constant value for all sites:

Pr(h0) = q (6)

6. We do not favor any a priori particular value of disparity. A constant prior
is considered and its value must satisfy Pr(hn) ·N + q = 1, which results in:

Pr(hn) = (1− q)/N (7)



7. Substituting the priors (5), (6), (7), and the likelihood (3) in (4), we get:

Pr(hn|I) =

{ Ln(I)PN
i=1 Li(I)+qN/(M−qM)

⇐ n 6= 0
qN/(M−qM)PN

i=1 Li(I)+qN/(M−qM)
⇐ n = 0

(8)

The choice of the hypothesis that maximizes (8) leads us to the MAP (maxi-
mum a posteriori) estimate of disparity1. However, without any further assump-
tions, there may be many ambiguous solutions. It is known that in the general
case, the stereo matching problem is under-constrained and ill-posed [25]. One
way to overcome this fact is to assume that the scene is composed by piece-wise
smooth surfaces and introduce spatial interactions between neighboring loca-
tions to favor smooth solutions. Later we will describe a cooperative spatial
facilitation method to address this problem.

3.2 Cortical Likelihood Images

While in cartesian coordinates the disparity warped images can be obtained by
shifting pixels by an amount independent of position, x′ = x + dn, in cortical
coordinates the disparity shifts are different for each pixel, as shown in Fig.2.
Thus, for each cortical pixel and disparity value, we have to compute the corre-

Retinal Shift Cortical Shift

Fig. 2. A space invariant shift in retinal coordinates (left) corresponds to a space
variant warping in the cortical array.

sponding pixel in the second image. Using the logmap definition (1), the cortical
correspondences can be obtained by:

z′n(z) = l
(
l−1(z) + dn

))
(9)

This map can be computed off-line for all cortical locations and stored in a look-
up table to speed-up on-line calculations. To minimize discretization errors, the
1 The terms in the denominator are normalizing constants and do not need to be

computed explicilty



weights for intensity interpolation can also be pre-computed and stored. A deeper
explanation of this technique can be found in [22].

Using the pre-computed look up tables, the cortical disparity warped images
can be efficiently computed on-line:

Icort′
n (z) = Icort′(zn(z))

From Eq. (3) we define N +1 cortical likelihood images, Lcort
n (z), that express

the likelihood of a particular hypothesis at cortical location z:

Lcort
n (z) = f(Icort(z)− Icort′

n (z))

Substituting this result in Eq. (8) we have the cortical posterior probabilities:

Prcort(hn|Icort) ∝
{

Lcort
n (I) ⇐ n 6= 0

qN/(M − qM) ⇐ n = 0 (10)

3.3 Cooperative spatial facilitation

The value of the likelihood images Lcort
n at each cortical location z can be in-

terpreted as the response of disparity selective neurons, expressing the degree
of match between corresponding locations in the right and left images. When
many disparity hypothesis are likely to occur (e.g. textureless areas) several
neurons tuned to different disparities may be simultaneously active. In a com-
putational framework, this “aperture” problem is usually addressed by allowing
neighborhood interactions between units, in order to spread information from
and to non-ambiguous regions. A bayesian formulation of these interactions leads
to Markov Random Fields techniques [33], whose existing solutions (annealing,
graph optimization) are still computationally expensive. Neighborhood interac-
tions are also very commonly found in biological literature and several coopera-
tive schemes have been proposed, with different facilitation/inibhition strategies
along the spatial and disparity coordinates [18, 21, 20]. For the sake of computa-
tional complexity we adopt a spatial-only facilitation scheme whose principle is
to reinforce the output of units at locations whose coherent neighbors (tuned for
the same disparity) are active. This scheme can be implemented very efficiently
by convolving each of the cortical likelihood images with a low-pass type of filter,
resulting on N + 1 Facilitated Cortical Likelihood Images, F cort

n . We use a fast
IIR isotropic separable first order filter, which only requires two multiplications
and two additions per pixel. We prefer filters of large impulse response, which
provide better smoothness properties and favor blob like objects, at the cost of
missing small or thin structures in the image. Also, due to the space-variant
nature of the cortical map, regions on the periphery of the visual field will have
more “smoothing” than regions in the center.

At this point, it is worth noticing that since the 70’s, biological studies show
that neurons tuned to similar disparities are organized in clusters on visual cortex
area V2 in primates [8], and more recently this organization has also been found
on area MT [9]. Our architecture, composed by topographically organized maps
of units tuned to the same disparity, agrees with these biological findings.



3.4 Computing the solution

Replacing in (10) the cortical likelihood images Lcort
n by their filtered versions

F cort
n we obtain N + 1 cortical disparity activation images:

Dcort
n =

{
F cort

n (I) ⇐ n 6= 0
qN/(M − qM) ⇐ n = 0 (11)

The disparity map is obtained by computing the hypothesis that maximizes
the cortical disparity activation images for each location:

d̂(z) = arg max
n

(Dcort
n (z))

In a neural networks perspective, this computation is analogous a winner-
take-all competition between non-coherent units at the same spatial location,
promoted by the existence of inhibitory connections between them [1].

4 Results

We have tested the proposed algorithm on a binocular active vision head in
general vergence configurations, and on standard stereo test images. Results are
shown on Figs. 3 and 4. Bright and dark regions correspond to near and far
objects, respectively. The innermost and outermost rings present some noisy
disparity values due to border effects than can be easily removed by simple
post-processing operations.

Fig. 3. The image in the right shows the raw foveated disparity map computed from
the pair of images shown in the left, taken from a stereo head verging on a point midway
between the foreground and background objects.

Some intermediate results of the first experiment are presented in Fig. 5,
showing the output of the cortical likelihood and the cortical activation for a
particular disparity hypothesis. In the likelihood image notice the great amount
of noisy points corresponding to false matches. The spatial facilitation scheme
and the maximum computation over all disparities are essential to reject the
false matches and avoid ambiguous solutions.

A point worth of notice is the blob like nature of the detected objects. As
we have pointed out in section 3.3, this happens because of the isotropic nature



Fig. 4. The disparity map on the right was computed from the well known stereo test
images from Tsukuba University. In the left we show the foveated images of the stereo
pair. Notice that much of the detail in the periphery is lost due to the space variant
sampling. Thus, this result can not be directly compared with others obtained from
uniform resolution images.

and large support of the spatial facilitation filters. Also, the space variant image
sampling, blurs image detail in the periphery of the visual field. This results
in the loss of small and thin structures like the fingertips in the stereo head
example and the lamp support in the Tsukuba images. However note that spatial
facilitation do not blur depth discontinuities because filtering is not performed
on the disparity map output, but on the likelihood maps before the maximum
operation.

The lack of detail shown in the computed maps is not a major drawback for
our applications, that include people tracking, obstacle avoidance and region of
interest selection for further processing. As a matter of fact, it has been shown
in a number of works that many robotics tasks can be performed with coarse
sensory inputs if combined with fast control loops [24].

Fig. 5. Intermediate results for the experiment in Fig.3. This figure shows the cortical
maps tuned to retinal disparity di = 26, for which there is a good match in the hand
region. In the left group we show the likelihood images Lcort

i (left) and Dcort
i (right)

corresponding to the cortical activation before and after the spatial facilitation step.
In the right group, the same maps are represented in retinal coordinates, for better
interpretation of results.

The parameters used in the tests are the following: log-polar mapping with
128 angular sections and 64 radial rings; retinal disparity range from −40 to 40
pixels (horizontal) and from −6 to 6 pixels (vertical), both in steps of 2; q = 0.1



(prior probability of occlusion); M = 256 (number of gray values); σ = 3 (white
noise standard deviation); facilitation filtering with zero-phase forward/reverse
filter y(n) = 0.8y(n− 1) + 0.2x(n).

The algorithms were implemented in C++ and take about three seconds to
run in a PII 350MHz computer.

5 Conclusions

We have presented a real-time dense disparity estimation algorithm for foveated
systems using the logmap. The algorithm uses an intensity based matching tech-
nique, which makes it easily extensible to other space variant sampling schemes.
Some results were taken from an active stereo head and others obtained from
standard test images. Many robots are currently equipped with foveated ac-
tive vision systems and the availability of fast stereopsis will drastically improve
their perceptual capabilities. Obstacle detection and tracking, region of interest
selection and object manipulation are some possible applications.

Acknowledgements

This work was partially supported by EU project MIRROR: Mirror Neurons
based Robot Recognition, IST-2000-28159.

References

1. S. Amari and M. Arbib. Competition and Cooperation in Neural Nets, pages 119–
165. Systems Neuroscience. J. Metzler (ed), Academic Press, 1977.

2. A. Basu and K. Wiebe. Enhancing videoconferencing using spatially varying sens-
ing. IEEE Trans. on Systems, Man, and Cybernetics, 38(2):137–148, Mar. 1998.

3. A. Bernardino and J. Santos-Victor. Binocular visual tracking : Integration of
perception and control. IEEE Trans. on Robotics and Automation, 15(6):137–146,
Dec. 1999.

4. A. Bernardino, J. Santos-Victor, and G. Sandini. Foveated active tracking with
redundant 2d motion parameters. Robotics and Autonomous Systems, 39(3-4):205–
221, June 2002.

5. M. Bolduc and M. Levine. A review of biologically motivated space-variant data
reduction models for robotic vision. CVIU, 69(2):170–184, Feb. 1998.

6. T. Boyling and J. Siebert. A fast foveated stereo matcher. In Proc. Conf. on
Imaging Science Systems and Technology, pages 417 – 423, Las Vegas, USA, 2000.

7. C. Capurro, F. Panerai, and G. Sandini. Dynamic vergence using log-polar images.
IJCV, 24(1):79–94, Aug. 1997.

8. T. Wiesel D. Hubel. Stereoscopic vision in macaque monkey. cells sensitive to
binocular depth in area 18 of the macaque mokey cortex. Nature, 225:41–42, 1970.

9. G. DeAngelis and W. Newsome. Organization of disparity–selective neurons in
macaque area mt. The Journal of Neuroscience, 19(4):1398–1415, 1999.

10. S. Mallat E. Chang and C. Yap. Wavelet foveation. J. Applied and Computational
Harmonic Analysis, 9(3):312–335, Oct. 2000.



11. B. Fischl, M. Cohen, and E. Schwartz. Rapid anisotropic diffusion using space-
variant vision. IJCV, 28(3):199–212, July/Aug. 1998.

12. G. Gambardella G. Sandini, C. Braccini and V. Tagliasco. A model of the early
stages of the human visual system: Functional and topological transformation per-
formed in the peripheral visual field. Biological Cybernetics, 44:47–58, 1982.

13. W. Geisler and J. Perry. A real-time foveated multi-resolution system for low-
bandwidth video communication. In Human Vision and Electronic Imaging, SPIE
Proceedings 3299, pages 294–305, Aug. 1998.

14. N. Griswald, J. Lee, and C. Weiman. Binocular fusion revisited utilizing a log-polar
tessellation. CVIP, pages 421–457, 1992.

15. E. Grosso and M. Tistarelli. Log-polar stereo for anthropomorphic robots. In Proc.
6th ECCV, pages 299 – 313, Dublin, Ireland, June-July 2000.

16. B. Horn. Robot Vision. MIT Press, McGraw Hill, 1986.
17. W. Klarquist and A. Bovik. Fovea: A foveated vergent active stereo system for dy-

namic three-dimensional scene recovery. IEEE Trans. on Robotics and Automation,
14(5):755 – 770, Oct. 1998.

18. D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science,
194:283–287, 1976.

19. M. Peters and A. Sowmya. A real-time variable sampling technique: Diem. In
Proc. ICPR, pages 316–321, Brisbane, Australia, Aug. 1998.

20. S. Pollard, J. Mayhew, and J. Frisby. Pmf: A stereo correspondence algorithm
using a disparity gradient limit. Perception, 14:449–470, 1985.

21. K. Prazdny. Detection of binocular disparities. Biol. Cybern, 52:93–99, 1985.
22. G. Metta R. Manzotti, A. Gasteratos and G. Sandini. Disparity estimation on

log-polar images and vergence control. CVIU, 83:97–117, 2001.
23. G. Salgian and D. Ballard. Visual routines for vehicle control. In D. Kriegman,

G. Hager, and S. Morse, editors, The Confluence of Vision and Control. Springer
Verlag, 1998.

24. J. Santos-Victor and A. Bernardino. Vision-based navigation, environmental repre-
sentations, and imaging geometries. In Proc. 10th Int. Symp. of Robotics Research,
Victoria, Australia, Nov. 2001.

25. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. IJCV, 47(1):7–42, April-June 2002.

26. E. Schwartz. Spatial mapping in the primate sensory projection : Analytic structure
and relevance to perception. Biological Cybernetics, 25:181–194, 1977.

27. J. Siebert and D. Wilson. Foveated vergence and stereo. In Proc. of the 3rd Int.
Conf. on Visual Search (TICVS), Nottingham, UK, Aug. 1992.

28. M. Tistarelli and G. Sandini. On the advantages of polar and log-polar mapping for
direct estimation of the time-to-impact from optical flow. IEEE Trans. on PAMI,
15(8):401–411, April 1993.

29. H. Tunley and D. Young. First order optic flow from log-polar sampled images. In
Proc. ECCV, pages A:132–137, 1994.

30. R. Wallace, P. Ong, B. Bederson, and E. Schwartz. Space variant image processing.
IJCV, 13(1):71–90, Sep. 1995.

31. C. Weiman and G. Chaikin. Logarithmic spiral grids for image processing and
display. Comp Graphics and Image Proc, 11:197–226, 1979.

32. R. Zabih Y. Boykov, O. Veksler. Disparity component matching for visual corre-
spondence. In Proc. CVPR, pages 470–475, 1997.

33. R. Zabih Y. Boykov, O. Veksler. Markov random fields with efficient approxima-
tions. In Proc. CVPR, pages 648–655, 1998.




