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Abstract

We propose an approach for a robot to imitate the ges-
tures of a human demonstrator. Our framework con-
sists solely of two components: a Sensory-Motor Map
(SMM) and a View-Point Transformation (VPT). The
SMM establishes an association between an arm image
and the corresponding joint angles and it is learned by
the system during a period of observation of its own ges-
tures. The VPT is widely discussed in the psychology
of visual perception and is used to transform the image
of the demonstrator’s arm to the so-called ego-centric
image, as if the robot were observing its own arm. Dif-
ferent structures of the SMM and VPT are proposed in
accordance with observations in human imitation. The
whole system relies on monocular visual information
and leads to a parsimonious architecture for learning
by imitation. Real-time results are presented and dis-
cussed.

1 Introduction

The impressive advance of research and develop-
ment in robotics and autonomous systems in the
past years has led to the development of robotic
systems of increasing motor, perceptual and cogni-
tive capabilities.

These achievements are opening the way for new
application opportunities that will require these
systems to interact with other robots or non tech-
nical users during extended periods of time. Tra-
ditional programming methodologies and robot in-
terfaces will no longer suffice, as the system needs
to learn to execute complex tasks and improve its
performance through its lifetime.

Our work has the long-term goal of building so-
phisticated robotic systems able to interact with
humans or other robots in a natural and intuitive
way. One promising approach relies on imitation
whereby a robot could learn how to handle a per-
son’s private objects by observing the owner’s be-
havior, over time.

Learning by imitation is not a new topic and
has been addressed before in the literature. This
learning paradigm has already been pursued in hu-

manoid robotic applications [1] where the number
of degrees of freedom is very large, tele-operation [2]
or assembly tasks [3]. Most published works, how-
ever, describe complete imitation systems but focus
their attention on isolated system components only,
while we describe a complete architecture.

We will concentrate on the simplest form of im-
itation that consists in replicating the gestures or
movements of a demonstrator, without seeking to
understand the gestures or the action’s goal. In
the work described in [4], the imitator can not only
replicate the gestures but also the dynamics of a
demonstrator, but it requires the usage of an ex-
oskeleton to sense the demonstrator’s behavior. In-
stead, our approach is exclusively based on vision.

The motivation to use visual information for im-
itation arises from the fact that many living be-
ings - like humans - resort to vision to solve an
extremely large set of tasks. Also, from the en-
gineering point view, video cameras are low-cost,
non invasive devices that can be installed in ordi-
nary houses and that provide an enormous quantity
of information, specially if combined with domain
knowledge or stereo data.

Interestingly, the process of imitation seems to
be the primary learning process used by infants and
monkeys during the first years of life. Recently, the
discovery of the mirror neurons in the monkey’s
brain [5, 6] has raised new hypotheses and provided
a better understanding of the process of imitation
in nature. These neurons are activated both when a
monkey performs a certain action and when it sees
the same action being performed by a demonstrator
or another monkey.

Even if the role of these neurons is not yet fully
understood, a few important conclusions can nev-
ertheless be drawn. Firstly, mirror neurons clearly
illustrate the intimate relationship between percep-
tion and action. Secondly, these neurons exhibit
the remarkable ability of ”recognizing” certain ges-
tures or actions when seen from very different per-
spectives (associating gestures performed by the
demonstrator to the subject’s own gestures).
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One of the main contributions of this paper is
related to this last observation, that is illustrated
in Figure 1. We propose a method that allows the
system to “rotate” the image of gestures done by
a demonstrator (allo-image) to the corresponding
image (ego-image) that would be obtained if those
same gestures were actually performed by the sys-
tem itself. We call this process the View-Point
Transformation (VPT). Surprisingly, in spite of the
importance given to the VPT in psychological stud-
ies [7], it has received very little attention from
other researchers in the field of visual imitation.

Figure 1: Gestures can be seen from very dis-
tinct perspectives. The image shows one’s own arm
performing a gesture (ego-image) and that of the
demonstrator performing a similar gesture (allo-
image).

One of the few works that dealt explicitly with
the VPT is [8]. However, instead of considering
the complete arm posture, only the mapping of the
end-effector position is done. The map between
the allo and ego image is performed using epipolar
geometry, based on a stereo camera pair.

Other studies addressed this problem in an im-
plicit and superficially way. A mobile robot capable
of learning the policy followed by another mobile
vehicle is described in [9]. Since the system kine-
matics is very simple, the VPT corresponds to a
transformation between the views of the two mobile
robots. This is achieved in practice by delaying the
imitator’s perception until it reaches the same place
as the demonstrator, without focusing the process
of VPT. The work described in [10] has similar ob-
jectives to our own research and allows a robot to
mimic the “dance” of an Avatar. However, it does
not address the VPT at all, and a special invasive
hardware was used to perform this transformation.
Instead, we present a simple architecture for im-
itation which carefully addresses the fundamental
process of View-Point Transformation.

The VPT allows the robot to map observed
gestures to a canonical point-of-view. The final

step consists in transforming these mapped features
to motor commands, which is referred to as the
Sensory-Motor Map (SMM). Our complete archi-
tecture for imitation is shown in Fig. 2.

Figure 2: The combination of the Sensory-Motor
Map and the View-Point Transformation allow the
robot to imitate the arm movements executed by
another robot or human.

The Sensory-Motor Map can be computed explic-
itly if the parameters of the arm-hand-eye configu-
ration are known a priori but - more interestingly
- it can be learned from observations of arm/hand
motions. Again, biology can provide relevant in-
sight. The Asymmetric Tonic Neck reflex [11] forces
newborns to look to their hands, which allows them
to learn the relationship between motor actions and
the corresponding visual stimuli.

Similarly, in our work the robot learns the SMM
during an initial period of self-observation, while
performing hand/arm movements. Once the SMM
has been estimated, the robot can observe a demon-
strator, use the VPT to transform the image fea-
tures to a canonical reference frame and map these
features to motor commands through the SMM.
The final result will be a posture similar to that
observed.

Structure of the paper
In Section 2, we present the models used

throughout this work, namely the arm kinematics
and the camera/eye geometry. Section 3 is devoted
to the definition and estimation of the Sensory-
Motor Map. In Section 4 we describe how the
system performs the View-Point Transformation.
In Section 5 we show how to use these elementary
blocks to perform imitation and present experimen-
tal results. In Section 6, we draw some conclusions
and establish directions for future work.

2 Modeling

Throughout the paper we consider a robotic system
consisting of a computer simulating an antropomor-
phic arm and equipped with a real web camera.
This section presents the models used for the cam-
era and robot body.
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2.1 Body/arm kinematics

The anthropomorphic arm is modeled as an articu-
lated link system. Fig. 3 shows the four arm links:
L1 - forearm, L2 - upper arm, L3 - shoulder width
and L4 - body height.

Figure 3: Kinematic model of the human arm.

It is further assumed that the relative sizes of
these links are known, e.g. from biometric mea-
surements: L1 = L2 = 1, L3 = 1.25 and L4 = 2.5.

2.2 Camera/eye geometry

An image is a projection of the 3D world whereby
depth information is lost. In our case, we will re-
trieve depth information from a single image by
using knowledge about the body links and a sim-
plified, orthographic camera model.

We use the scaled orthographic projection model
that assumes that the image is obtained by pro-
jecting all points along parallel lines plus a scale
factor. Interestingly, such approximation may have
some biological grounding taking into account the
scale-compensation effect in the human vision [12]
whereby we normalize the sizes of known objects
irrespective to their distances to the eye.

Let M = [X Y Z]T denote a 3D point expressed
in the camera coordinate frame. Then, with an
orthographic camera model, M is projected onto
m = [u v]T , according to:

m = PM[
u
v

]
= s

[
1 0 0
0 1 0

] X
Y
Z


 (1)

where s is a scale factor that can be estimated plac-
ing a segment with size L fronto-parallel to the
camera and measuring the image size l(s = l/L).

For simplification, we assume that the camera
axis is positioned in the imitator’s right shoulder
with the optical axis pointing forward horizontally.
With this specification of the camera pose, there is

no need for an additional arm-eye coordinate trans-
formation in Equation (1).

3 Sensory-Motor Map

The Sensory-Motor Map (SMM) defines a corre-
spondence between perception and action. It can
be interpreted in terms of forward/inverse kinemat-
ics for the case of robotic manipulators. The SMM
can be used to predict the image resulting from
moving one’s arm to a certain posture. In our case,
the SMM will allow the system to determine the
arm’s joint angles that correspond to a given im-
age configuration of the arm.

In the context of imitation, the SMM can be used
with different levels of ambiguity/completeness. In
some cases, one wants to replicate exactly someone
else’s gestures, considering all the joint angles. In
some other cases, however, we may want to imitate
the hand pose only, while the position of the elbow
or the rest of the arm configuration is irrelevant.
To encompass these possibilities, we have consid-
ered two cases: the full arm SMM and the free-
elbow SMM that will be described in the following
sections. Finally we describe how the system can
learn the SMM during a period of self-observation.

3.1 Full-Arm SMM

We denote the elbow and wrist image coordinates
by me and mw, the forearm and upper arm image
length by l1 and l2 and θi=1..4, the various joint
angles. We then have:

[θ1, · · · , θ4] = F1(me,mw, l1, l2, L1, L2, s)

where F1(.) denotes the SMM, L2/L1 represents
the (known) length of the upper/forearm and s is
the camera scale factor.

The computation of this function can be done in
successive steps, where the angles of the shoulder
joint are determined first and used in a later stage
to simplify the calculation of the elbow joint’s an-
gles.

The inputs to the SMM consist of features ex-
tracted from the image points of the shoulder, el-
bow and wrist; the outputs are the angular posi-
tions of every joint. The shoulder pan and eleva-
tion angles, θ1 and θ2 can be readily obtained from
image data as:

θ1 = f1(me) = arctan(ve/ue)
θ2 = f2(l2, L2, s) = arccos(l2/sL2)

Once the system has extracted the shoulder an-
gles, the process is repeated for the elbow. Before
computing this second set of joint angles, the image
features undergo a set of transformations so as to
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compensate the rotation of the shoulder:[
u′

w

v′
w

ξ

]
= Rzy(θ1, θ2)




 uw

vw√
s2L2

1 − l21


−

[
ue

ve

0

]
(2)

where ξ is not used in the remaining computations
and Rzy(θ1, θ2) denotes a rotation of θ1 around the
z axis followed by a rotation of θ2 around the y
axis.

With the transformed coordinates of the wrist
we can finally extract the remaining joint angles,
θ3 and θ4:

θ3 = f3(m′
w) = arctan(v′w/u′

w)
θ4 = f4(m′

w, L1, s) = arccos(l′1/sL1)

The approach just described allows the system
to determine the joint angles corresponding to a
certain image configuration of the arm. In the next
section, we will address the case where the elbow
joint is allowed to vary freely.

3.2 Free-Elbow SMM

The free-elbow SMM is used to generate a given
hand position, while the elbow is left free to reach
different configurations. The input features con-
sist of the hand image coordinates and the depth
between the shoulder and the hand.

[θ1, θ2, θ4] = F2(mw,rdZw, L1, L2, s)

The elbow joint, θ3, is set to a comfortable po-
sition. This is done in an iterative process aiming
at maintaining the joint positions as far as possible
from their limit values. The optimal elbow angle
position, θ̂3 is chosen to maximize:

θ̂3 = arg max
θ3

∑
i

(θi − θlimits
i )2

while the other angles can be calculated from the
arm features. Again, the estimation process can be
done sequentially, each joint being used to estimate
the next one:

θ4 = arcsin
(

rx2
h +ry2

h +rz2
h

2
− 1
)

θ1 = 2 arctan

(
b1 −

√
b2
1 + a2

1 − c2
1

a1 + c1

)

θ2 = 2 arctan

(
b2 −

√
b2
2 + a2

2 − c2
2

a2 + c2

)
+ π

where the following constants have been used:

a1 = sin θ4 + 1
b1 = cos θ3 cos θ4

c1 = −ryh

a2 = cos θ4 cos θ2 cos θ3 − sin θ2(1 + sin θ4)
b2 = − cos θ4 sin θ3

c2 = rxh

3.3 Learning the SMM

In the previous sections we have derived the expres-
sions of the full-arm and free-elbow SMMs. How-
ever, rather than coding these expressions directly
we adopted a learning approach whereby the sys-
tem learns the SMM by performing arm movements
and observing the effect on the image plane.

The computation of the SMM can be done se-
quentially: estimating the first angle, which is then
used in the computation of the following angle and
so forth. This fact allows the system to learn the
SMM as a sequence of smaller learning problems.

This approach has strong resemblance to the de-
velopment of sensory-motor coordination in new-
borns and young infants, which starts by simple
motions that get more and more elaborate as in-
fants acquire a better control over motor coordina-
tion.

In all cases, we use a Multi-Layer Perceptron
(MLP) to learn the SMM, i.e. to approximate
functions fi,i=1..4. Table 1 presents the learning
error and illustrates the good performance of our
approach for estimating the SMM.

θ1 θ2 θ3 θ4

3.6e−2 3.6e−2 3.6 3.6

Table 1: Mean squared error (in deg.2) for the each
joint in the full-arm SMM

Ideas about development can be further ex-
ploited in this construction. Starting from simpler
cases, de-coupling several degrees of freedom, inter-
leaving perception with action learning cycles are
developmental “techniques” found in biological sys-
tems.

4 View-Point Transformation

A certain arm gesture can be seen from very differ-
ent perspectives depending on whether the gesture
is performed by the robot (self-observation) or by
the demonstrator.

One can thus consider two distinct images: the
ego-centric image, Ia, during self-observation and
the allo-centric image, Ie, when looking at other
robots/people. The View-Point Transformation
(VPT) has the role of aligning the allo-centric im-
age of the demonstrator’s arm, with the ego-centric
image, as if the system were observing its own arm.

The precise structure of the VPT is related to the
ultimate meaning of imitation. Experiments in psy-
chology show that imitation tasks can be ambigu-
ous. In some cases, humans imitate only partially
the gestures of a demonstrator (e.g. replicating the
hand pose but having a different arm configuration,
as in sign language), use a different arm or execute
gestures with distinct absolute orientations [13]. In
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some other cases, the goal consists in mimicking
someone else’s gestures as completely as possible,
as when performing dancing or dismounting a com-
plex mechanical part.

According to the structure of the chosen VPT, a
class of imitation behaviors can be generated. We
consider two different cases. In the first case - 3D
VPT - a complete three-dimensional imitation is
intended. In the second case - 2D VPT - the goal
consists in achieving coherence only in the image,
even if the arm pose might be different. Depend-
ing on the desired level of coherence (2D/3D) the
corresponding (2D/3D) VPT allows the robot to
transform the image of an observed gesture to an
equivalent image as if the gesture were executed by
the robot itself.

4.1 3D View-Point Transformation

In this approach we explicitly reconstruct the pos-
ture of the observed arm in 3D and use fixed points
(shoulders and hip) to determine the rigid transfor-
mation that aligns the allo-centric and ego-centric
image features: We then have:

Ie = P T Rec(Ia) = V PT (Ia)

where T is a 3D rigid transformation and Rec(Ia)
stands for the 3D reconstruction of the arm posture
from allo-centric image features. Posture recon-
struction and the computation of T are presented
in the following sections.

4.1.1 Posture reconstruction

To reconstruct the 3D posture of the observed arm,
we will follow the approach suggested in [14], based
on the orthographic camera and articulated arm
models presented in Section 2.

Let M1 and M2 be the 3D endpoints of an arm-
link whose image projections are denoted by m1

and m2. Under orthography, the X,Y coordinates
are readily computed from image coordinates (sim-
ple scale). The depth variation, dZ = Z1 −Z2, can
be determined as:

dZ = ±
√

L2 − l2

s2

where L = ‖M1 − M2‖ and l = ‖m1 − m2‖.
If the camera scale factor s is not known before-

hand, one can use a different value provided that
the following constraint, involving the relative sizes
of the arm links, is met:

s ≥ max
i

li
Li

i = 1..4 (3)

Fig. 4 illustrates results of the reconstruction
procedure. It shows an image of an arm gesture
and the corresponding 3D reconstruction, achieved

 Arm x

y

z

Figure 4: Left: Reconstructed arm posture. Right:
Original view.

with a single view and considering that s and the
arm links proportions were known.

With this method there is an ambiguity in the
sign of dZ. We overcome this problem by restrict-
ing the working volume of the arm. In the future,
we will further address this problem and several ap-
proaches may be used: (i) optimization techniques
to fit the arm kinematic model to the image; (ii)
explore occlusions to determine which link is in the
foreground; or (iii) use kinematics constraints to
prune possible arm configurations.

4.1.2 Rigid Transformation (T )

A 3D rigid transformation is defined by three an-
gles for the rotation and a translation vector. Since
the arm joints are moving, they cannot be used
as reference points. Instead, we consider the three
points in Fig. 3: left and right shoulders, (Mls,Mrs)
and hip, Mhip, with image projections denoted by
(mls,mrs,mhip). The transformation T is deter-
mined to translate and rotate these points until
they coincide with those of the system’s own body.

The translational component must place the
demonstrators right shoulder at the image origin
(which coincide’s with the system’s right shoulder)
and can be defined directly in image coordinates:

t = −amrs

After translating the image features directly, the
remaining steps consist in determining the rotation
angles to align the shoulder line and the shoulder-
hip contour. The angles of rotation along the z, y
and x axes, denoted by φ, θ and ψ are given by:

φ = arctan (vls/uls)
θ = arccos (uhip/L4)
ψ = arccos (vhip/L3)

Hence, by performing the image translation first
and the 3D rotation described in this section, we
complete the process of aligning the image projec-
tions of the shoulders and hip to the ego-centric
image coordinates.

4.2 2D View-Point Transformation

The 2D VPT is used when one is not interested in
imitating the depth variations of a certain move-
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ment, alleviating the need for a full 3D transfor-
mation. It can also be seen as a simplification of
the 3D VPT if one assumes that the observed arm
describes a fronto-parallel movement with respect
to the camera.

The 2D VPT performs an image translation to
align the shoulder of the demonstrator (ams) and
that of the system (at the image origin, by defini-
tion). The VPT can be written as:

V PT (am) =
[ −1 0

0 1

]
[am −ams] (4)

and is applied to the image projection of the
demonstrator’s hand or elbow, amh or ame.

Notice that when the arm used to imitate is the
same as the demonstrator, the imitated movement
is a mirror image of the original. If we use a simple
identity matrix in Equation (4) then the movement
will be correct. At the image level both the 2D and
3D VPTs have the same result but the 3D posture
of the arm is different in the two cases.

From the biological standpoint, the 2D VPT is
more plausible than the 3D version. In [13] several
imitation behaviors are presented which are not al-
ways faithful to the demonstrated gesture: some-
times, people do not care about usage of the cor-
rect hand, depth is irrelevant in some other cases,
movements can be reflections of the original ones,
etc. The 3D VPT might be more useful in indus-
trial facilities where gestures should be reproduced
as exactly as possible.

5 Experiments

We have implemented the modules discussed in the
previous sections to build a system able to learn by
imitation. In all the experiments, we use a web
camera to observe the demonstrator gestures and a
simulated robot arm to replicate those gestures.

We start by describing the approach used for
hand-tracking before presenting the overall results
of imitation. The position of the shoulder is as-
sumed to be fixed. In the following sections we
shall discuss about the procedures for doing imita-
tion.

5.1 Hand Color Segmentation

To find the hand in the image we use a color seg-
mentation scheme, implemented by a feed-forward
neural network with three neurons in the hidden
layer. As inputs we use the hue and saturation
channels of HSV color representation. The train-
ing data are obtained by selecting the hand and the
background in a sample image. After color classi-
fication a majority morphological operator is used.
The hand is identified as the largest blob found and
its position is estimated over time with a Kalman

filter. Figure 5 shows a typical result of this ap-
proach.

Figure 5: Skin color segmentation results.

5.2 Gesture Imitation

The first step to achieve imitation consists in train-
ing the system to learn the Sensory-Motor Map as
described in Section 3.3. This is accomplished by a
neural network that estimates the SMM while the
system performs a large number of arm movements.

The imitation process consists of the following
steps: (i) the system observes the demonstrator’s
arm movements; (ii) the VPT is used to transform
these image coordinates to the ego-image, as pro-
posed in Section 4 and (iii) the SMM generates the
adequate joint angle references to execute the same
arm movements.

Figure 6 shows experimental results obtained
with the 3D-VPT with the learned SMM (full-
arm). To assess the quality of the results, we over-
laid the images of the executed arm gestures (wire
frame) on those of the demonstrator. The figure
shows that the quality of imitation is very good.

Figure 7 shows results obtained in real-time
(about 5 Hz) when using the 2D VPT and the free-
elbow SMM. The goal of imitating the hand gesture
is well achieved but, as expected, there are differ-
ences in the configuration of the elbow, particularly
at more extreme positions.

These tests show that encouraging results can
be obtained with the proposed framework under
realistic conditions.

6 Conclusions and future
work

We have proposed an approach for learning by im-
itation that relies exclusively on visual information
provided by a single camera.

One of the main contributions is the View-Point
Transformation that performs a “mental rotation”
of the image of the demonstrator’s arm to the ego-
image, as if the system were observing its own arm.
In spite of the fundamental importance of the VPT
in visual perception and in the psychology of im-
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Figure 6: The quality of the results can be assessed
by the coincidence of the demonstrator gestures
and the result of imitation.

Figure 7: Family of solutions with different elbow
angles, while the hand is faithfully imitated.

itation [7], it has received little attention by re-
searchers in robotics.

We described two different VPTs needed for 3D
or 2D imitation. The View-Point Transformation
can have an additional interest to Mirror Neurons
studies, by providing a canonical frame of reference
that greatly simplifies the recognition of arm ges-
tures.

The observed actions are mapped into muscles
torques by the Sensory-Motor Map, that associates
image features to motor acts. Again two different
types of SMM are proposed, depending on whether
the task consists of imitating the entire arm or the
hand position only. The SMM is learned automat-
ically during a period of self-observation.

Experiments conducted to test the various sub-
systems have led to encouraging results, thus vali-
dating our approach to the problem.

Besides improvements on the feature detection
component using shape and kinematic data, future
work will focus on the the understanding of the task
goals to enhance the quality of imitation.
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