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Abstract 
In this paper we describe a developmental path which allows 
a humanoid robot to initiate interaction with the 
environment by grasping objects. Development begins with 
the exploration of the robot’s own body (control of the head 
and arm, identification of the hand) and moves afterward to 
the external world (reaching and grasping). A final 
experiment is reported to illustrate how these simple 
behaviors can be integrated to start autonomous exploration 
of the environment. In fact we believe that for an active 
system the capacity to act is not a mere arrival point but it is 
rather required in order for the system to further develop by 
acquiring and structuring information about its environment. 

Introduction   
If the first interaction with the environment happens 
through vision it is only by acting that we are able to 
discover certain properties about the entities populating the 
external world. For example by applying different actions 
on an object we can probe it for properties like weight, 
rigidity, softness and roughness, but also collect 
information about its shape. Furthermore we can carry out 
further exploration to learn how an object behaves when 
certain actions are applied to it or, in a similar way, how we 
can handle it to achieve a particular goal (tool use). 

Besides, autonomous agents can exploit actions to 
actively guide exploration. For an artificial system like a 
robot this can be extremely useful to simplify learning. For 
instance the system can identify a novel object in a set and 
grasp it, bring it closer to the cameras (so to increase the 
resolution), rotate it, squeeze it, and eventually drop it after 
enough information has been acquired. Exploration in this 
case is easier because it is initiated by the agent in a self-
supervised way. This does not only mean that the agent has 
direct control on the exploration procedure, but also that it 
can establish a causal link between its actions and the 
resulting perceptions. While holding and rotating an object, 
for example, its appearance, the tactile sensation coming 
from the hand, along with the torque sensed at the wrist, 
can be associated to the position of the fingers around the 
object and to its orientation. Similarly, affordances can be 
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explored by trying to grasp the object in different ways and 
discovering what kind of actions  can be performed with it. 

The ability to manipulate objects emerges relatively early 
in children during development; for instance at three 
months infants start reaching for objects to grasp them and 
bring them to their mouth; nine months-old babies are able 
to control the fingers to perform different grasp types 
(precision grip, full palm grasp, (von Hofsten, 1983)). 
Maybe it is not by chance that infants learn to grasp way 
before they can speak or walk. However, even the simplest 
form of grasp (with the full hand open as newborns do in 
the first months of their life) is not a trivial task. It involves 
at least the ability to control gaze, to move the arm to reach 
a particular position in space, pre-shape the hand and orient 
it according to the object’s size and orientation. In addition, 
the impact with the object must be predicted to correctly 
plan the pre-shaping of the hand (von Hofsten et al. 1998). 
In infants all these motor competences are not present at 
birth; rather they are acquired during development by 
exploiting an initial set of innate abilities which allow them 
to start the exploration of their body and environment. 

In this paper we present a possible developmental path 
for a humanoid robot mimicking some aspects of infant 
development. In our artificial implementation we divided 
this process in three phases. The first phase concerns 
learning a body self-image; the robot explores the physical 
properties of its own body (e.g. the weight of the arm, the 
visual appearance of the hand) and basic motor abilities 
(e.g. how to control the head to visually explore the 
environment). We call the second stage learning to interact; 
here the robot starts active exploration of the external world 
and learns to perform goal directed actions on objects 
(mainly reaching and grasping). Finally the third phase 
involves learning about objects and others; the robot’s 
previous experience is used to create expectations on the 
behavior of other entities (objects as well as intentional 
agents). 

It is important to stress that these classification is not 
meant to be strict. These three stages in fact are not actually 
present in the robot; all modules “grow” at the same time; 
the maturation of each part allows the overall system to 
perform better but at the same time it increases the 
possibility of other parts to develop. Thus for instance the 
ability of the head to perform saccade allows the system to 
fixate objects and start reaching for them. Arm movements, 



although not accurate, in turn allow the system to initiate 
interaction and improve based on its own mistakes. 

The third phase is perhaps the most critical and 
challenging one as it leads to the development of advanced 
perceptual abilities. In previous work we have addressed at 
least some aspects related to this phase (Natale, Rao and 
Sandini 2002, Fitzpatrick et al. 2003). In this we focus on 
the first two phases of the developmental process of the 
robot: learning a body-schema and learning to act.  

 

Figure 1 The robotic setup: the Babybot 

The robotic setup 
The robotic setup is an upper torso humanoid robot 
composed of a five dof head, a six dof arm and a five-
fingered hand (Figure 1). Two cameras are mounted on the 
head; they can pan independently and tilt together on a 
common axis. Two additional degrees of freedom allow the 
head to pan and tilt on the neck. The arm is an industrial 
manipulator (Unimate Puma 260); it is mounted 
horizontally to closer mimic the kinematics of a human arm. 
The hand has seventeen joints distributed as follows: four 
joints articulate the thumb, whereas index, middle, ring and 
little fingers have three phalanges each. The fingers are 
underactuated to reduce the overall number of motors 
employed. Thus two motors allow the thumb to rotate and 
flex while two motors are connected to the index finger; 
finally the remaining fingers are linked and form a single 
virtual finger that is actuated by two motors only. Intrinsic 
compliance in all joints allows passive adaptation of the 
hand to the object being grasped. Magnetic and optic 
encoders provide position feedback from all phalanges. As 
far as the sensory system is concerned, the robot is 
equipped with two cameras, two microphones, and a three 

axis gyroscope mounted on the head. Tactile feedback is 
available on the hand; a force sensor allows measuring 
force and torque at the wrist. Finally proprioceptive 
feedback is available from the motor encoders. More details 
about the robot can be found in (Natale 2004). 

Learning a body-map 
The physical interaction with the environment requires a 
few prerequisites. To grasp an object the robot must be able 
to direct gaze to fixate a particular region of the visual 
field, program a trajectory with the arm to bring it close to 
the object and eventually grasp it. Although reaching in 
humans is mostly ballistic, localization of the hand is 
required to perform fine adjustments at the end of the 
movement, or, in any case, during learning. We previously 
addressed the problem of controlling the head to perform 
smooth pursuit and saccades towards visual and auditory 
targets (Natale, Metta and Sandini 2002, Metta 2000, 
Panerai, Metta and Sandini 2002). Here we focus the 
discussion on the second aspect, that is learning to localize 
the arm end-point and to segment it out from the rest of the 
world. 

It is known that in humans and primates the brain 
maintains an internal representation of the body, the relative 
positions of the limbs, their weight and size. This body-
schema is used for planning but, maybe more importantly, 
also to predict the outcome of an ongoing action and 
anticipate its consequences. Prediction and anticipation are 
important aspects of cognition because they extend our 
ability to understand events by matching our perception and 
expectations. 

Graziano and colleagues (Graziano 1999, Graziano et al. 
2000) found neurons in the primate’s motor cortex (area 5) 
which code the position of the hand in the visual field. 
Tested under different conditions these neurons had 
receptive fields coding the position of the hand in space; in 
particular some of them showed to be driven by visual 
information (that is they fired when the hand was visible), 
whereas others happened to relay on proprioceptive 
feedback only (they fired even in those cases when the hand 
was covered with a barrier). 

In infants self-knowledge appears after a few months of 
development; for instance five-months-old infants are able 
to recognize their own leg movements on a mirror (Rochat 
and Striano 2000). But what are the mechanisms used by 
the brain to build such representation? Pattern similarities 
between proprioceptive and other sensory feedbacks are 
cues that could be used to disambiguate between the 
external world and the body. Indeed, experimental results 
on infants corroborate the hypothesis that perception of 
intermodal form actually plays a dominant role in the 
development of self-recognition (Rochat and Striano 2000).
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Figure 2 Learning the hand localization. Left: average error in pixels during learning. Right: result of the localization at the end of learning 
(robot’s point of view, left eye). 

 
The problem of learning a body-schema has been 

addressed in robotics as well. Yoshikawa et al. 
(Yoshikawa at al. 2003) exploited the idea that the body is 
invariant with respect to the environment; in their work 
proprioceptive information is used to train a neural 
network to segment the arms of a mobile robot. In the case 
of Metta and Fitzpatrick (Metta and Fitzpatrick 2003) the 
robot moved the arm in a repetitive way and optic-flow 
was computed to estimate its motion in the visual field. 
Cross-correlation between visual and proprioceptive 
feedback was then used to identify those part of the image 
which were more likely to be part of the arm end-point. 
Similarly, in our case the robot moves the wrist to produce 
small periodic movements of the hand. A simple motion 
detection algorithm (image difference with adaptive 
background estimation) is employed to compute motion in 
the visual field; a zero-crossing algorithm detects the 
period of oscillation for each pixel. The same periodic 
information is extracted from the proprioceptive feedback 
(motor encoders). Pixels which moved periodically and 
whose period was similar to the one computed in the 
motor feedback are selected as part of the hand. Instead, 
the algorithm segments out uncorrelated pixels (e.g. 
someone walking in the background). The segmentation is 
a sparse pixel map; a series of low-pass filters at different 
scale is sufficient to remove outliers and produce a dense 
binary image. 

By using this segmentation procedure the robot can 
learn to detect its own hand. In particular it builds three 
models: a color histogram, and two forward models to 
compute the position and size of the hand in the visual 
field based on the current arm posture. The latter are two 
neural networks which provide the expected position, 
shape and orientation of the hand given the arm 
proprioceptive feedback. The color histogram is 
independent (at least to a certain extent) of the orientation 
and position of the hand and can easily computed out of a 
single trial. However by accumulating the result of 

successive experiments it is possible to reduce the noise 
and increase the accuracy of the histogram. The forward 
models are trained as follow: the segmentation procedure 
is repeated several times thus randomly exploring 
different arm postures. For each trial the center of mass of 
the segmentation is extracted and used as a training 
sample for the first neural network. Additional shape 
information is extracted by fitting a parametric contour on 
the segmented regions; a good candidate for this purpose 
is the ellipse because it captures orientation and size of the 
hand. Accordingly a second neural network is trained to 
compute the ellipse parameters which fit the hand in the 
visual field given the current arm posture. 

The color histogram gives a statistical description of the 
color of an object and can be used to spot regions of the 
image that are more likely to contain the hand. However, 
the histogram alone is easily fooled by objects that have 
similar colors. By putting together the contributions of the 
two neural networks it is possible to reduce the 
ambiguities and identify precisely the hand in the visual 
field. Figure 2 reports the result of learning and shows the 
result of the localization for a few different arm postures. 

Overall the hand detection system can be employed in 
different ways. Since its output is expressed in a 
retinocentric reference frame the x,y, coordinate of the 
hand can be sent directly to the controller of the head 
which can track it as the arm moves in space (see Figure 
2). In the next section we will see how this coordinated 
behavior might be exploited to learn how to reach visually 
identified objects. Another possibility is to make the robot 
look at its hand to explore an object that has grasped. This 
feature may prove helpful especially in case the robot is 
endowed with foveated vision. Finally by addressing the 
forward models with desired joint values (a virtual arm 
position), the robot can predict what will be the position 
of the hand for a given arm posture; in other words the 
same mapping used for the hand localization can convert 
the hand trajectory from joint space to retinal coordinates. 
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Figure 3 Learning to reach. Left: error during learning, joint angle (squared root of the sum squared error of each joint, in degrees). Right: 
an exemplar sequence after learning (robot’s point of view, left eye). 

 

Learning to reach 
Two problems need to be solved to successfully reach for 
a location in space; the first one is the kinematic 
transformation between the target position and the 
corresponding arm posture whereas the second one 
concerns how to actually generate the motor commands 
required to achieve that particular posture (inverse 
dynamics and trajectory generation). In this section we 
focus on the first problem, that is how to learn the 
transformation required to compute the joint configuration 
to reach a specific point in space. Let us assume that the 
robot is already fixating the target. In this case the fixation 
point implicitly defines the target for reaching; besides, if 
the correct angle of vergence has been achieved, the 
posture of the head defines univocally any position in the 
three dimensional space (in polar form distance, azimuth 
and elevation). To solve the task the robot needs the 
following mapping: 
 ( )arm headf=q q  (1.1) 
where headq is a vector which represents the head posture 
(target point) and armq  is the corresponding arm joint 
vector. 

Thus reaching starts by first achieving fixation of the 
object; headq  is then used to address the mapping of 
equation (1.1) and recover the arm motor command armq . 
Interestingly, the procedure to learn the reaching map is 
straightforward if we relay on the tracking behavior that 
was described in the previous section. At the beginning 
(before starting to reach) the robot explores the workspace 
by moving the arm randomly while tracking the hand; 
each pair of arm-head posture defines a training sample to 
learn equation (1.1) (the reaching map). After enough 
samples are acquired, the robot can use the reaching map 
and start performing reaching. However, exploration of 

the workspace and actual reaching do not need to be 
separate. If the map is properly initialized (for instance 
with three values distributed at the center, left and right 
with respect to the robot) exploration can be achieved by 
adding noise to the output of the map and activating the 
tracking of the hand to estimate the actual position of the 
arm. Properly initialization of the map is required to assert 
that the value sent to the arm is always meaningful (and 
safe); the noisy component guarantees the exploration of 
the workspace. As learning proceeds and new samples are 
collected the amount of noise (its variance) is 
progressively reduced to zero to achieve precise reaching. 
In the experiment reported here, the two methods were 
interleaved. After reaching the robot performed a few 
random movements while tracking the hand (the noise in 
this case had a Gaussian distribution with mean value of 0 
degrees and standard deviation of 5 degrees). This 
strategy is beneficial because it allows to collect more 
than a single training sample for each reaching trial; 
besides, in this way, the exploration is biased toward those 
regions of the space where reaching occurs more often 
(usually in the part of the workspace in front of the robot). 

Once the final arm posture is retrieved from the map it 
is still necessary to plan a trajectory to achieve it. For this 
purpose a linear interpolation is carried out between the 
current and final arm position; the arm command is thus 
applied in “small steps”. The actual torque is computed 
using a PD controller employing gravity compensation 
(for details see (Natale 2004)). The complete control 
schema is reported below (Figure 4). 

headq
reaching

map
Low Level
Controller arm

*
armq armq

 

Figure 4 Reaching control schema. 
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Figure 5. Grasping sequence (robot’s point of view, left eye). At frame 1 a human places a toy in the robot’s palm. Tactile feedback 
initiates a clutching action of the hand around the toy, while at the same time, the robot begins moving the eyes to fixate the hand (frames 2 
and 3). Once fixation has been achieved a few frames at the center of the cameras are captured to train the object recognition algorithm 
(frame 3); at frame 4 the toy is released. The robot then starts to search for the toy to grasp it. The object is hence localized, fixated and 
finally grasped (frames 6-9). 

 

Grasping an object on the table 
We present now an experiment to show a possible 
integration of the modules described in the previous 
sections. The experiment is still preliminary but it is useful 
to introduce and illustrate the direction we pursue in our 
research. 

With reference to Figure 5, the experiment starts when 
an object is placed in the palm of the robot (frame 1). The 
pressure on the palm elicits a grasping action; the fingers 
flex toward the palm to close around the object. At this 
point the robot brings the object close to the eyes while 
maintaining fixation on the hand (frame 2 and 3). When 
the object is fixated a few frames are captured at the 
center of the cameras to train an object recognition 
algorithm (the details of the object recognition are not 
relevant here, for a description see (Fitzpatrick 2003)). 
After the object recognition algorithm is trained the object 
is released (frame 4). Among the other objects the robot 
can now spot the one it has seen before, fixate it and 
finally grasp it (frames 5-9). Haptic information is used to 
detect if the grasp was successful (mainly the shape of the 
hand at the end of the grasp); if failure is detected the 
robot starts looking for the object again and performs 

another trial, otherwise it waits until another object is 
placed on the palm. 

A few aspects need to be explained in greater detail. 
The hand motor commands are always preprogrammed; 
the robot uses three given primitives to close the hand 
after pressure is detected on the palm, and to pre-shape 
and flex the fingers around the object during active 
grasping. The correct positioning of the fingers is 
achieved by exploiting passive adaptation and the intrinsic 
elasticity of the hand (see (Natale 2004, Natale, Metta and 
Sandini 2004). The arm trajectory in also in part 
preprogrammed to approach the object from above, 
increasing the probability of success. This is obtained by 
including waypoints in the joint space relative to the final 
arm posture (the latter is retrieved from the map as 
described in the previous section). No other knowledge is 
required by the robot to perform the task, as the object to 
be grasped is not known in advance. 

 Discussion 
In this paper we have proposed a possible developmental 
path for a humanoid robot. The experiments described 
focus on the steps which allow the robot to learn to reach 
objects on a table. The knowledge initially provided to the 
robot consists of a set of stereotyped behaviors, basic 



perceptual abilities and learning rules. No prior 
knowledge about the objects to be grasped is assumed. 

The robot starts by learning to control and recognize its 
own body (control of gaze and arm, hand localization); the 
first experiment showed how it is possible to build a 
model of the hand to allow the robot to detect and 
distinguish it in the environment. In the second experiment 
we describe how this knowledge can be used to learn to 
interact with the environment by reaching for objects. A 
few points are worth stressing. First, learning is online and 
it is not separated from the normal functioning of the 
robot. Second, all stages of development are required and 
equally important. Thus, reaching cannot start (and 
improve) if gaze is not controlled or the robot has not 
learnt to localize the hand. 

Learning to act is an essential requirement to start 
interaction with the environment. By properly moving the 
arm in the workspace, in fact, the robot can try simple 
actions like pushing or pulling an object on a table. Even 
this simple form of interaction proves sufficient for 
developing more sophisticated perceptual abilities. This 
was shown in some of our previous works (Natale, Rao 
and Sandini 2002, Fitzpatrick et al. 2003, Metta and 
Fitzpatrick 2003) where we illustrated how a humanoid 
robot can learn to push/pull an object in different 
directions or even imitate pushing/pulling actions 
performed by another agent (a human). This stresses once 
more how important is the physical interaction between 
the agent and the world during ontogenesis; the motor 
repertoire of actions that is discovered and learnt by the 
agent in fact constitutes a reference system that can be 
used to map events that happen in the environment thus 
adding meaning to them. For this reason we believe that 
learning to act is at the basis of higher level functions like 
action/event recognition, interpretation and imitation. 

Finally, in the third experiment, we show how the motor 
and perceptual abilities developed in these initial stages 
can be integrated meaningfully. The resulting behavior 
allows the robot to autonomously acquire visual and 
haptic information about objects in the environment 
(another experiment is this direction is reported in (Natale, 
Metta and Sandini 2004)). 
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