WX

RobotCub

YARP

An Introduction

or ..

how to live in harmony with
your (robotic) world

.E ‘i‘i*
Cogsys RN
Cognitive Systems el

B RobotCub.org

WX

RobotCub . .
Overview of seminar

p—

What is YARP?
How does it work?
Some examples

A (simple) demonstration
What can YARP do for me?

S A

How to get started

Please feel free to ask gquestions as we go ...

.E t* * “
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

WX

Robottub Yet Another Robot Platform

* YARP is an open-source software I|br'ar'y
for humanoid robotics Nt

History

- An MIT / Lira-Lab collaboration
» Paul Fitzpatrick, Giorgio Metta, Lorenzo Natale

- Born on Kismet, grew on COG

- With a major overhaul, now used by RobotCub
consortium,

- Used by the broader open-source community
- And of course, KASPAR, here at UH

. RobotCub.org

WX
Ny What is YARP?

* YARP is an open-source software library for
humanoid robotics

- Network communication, device abstraction AR de
i

- Designed to support and encourage:

- Collaboration (code-sharing across space)

- Longevity (code-sharing across time)

 YARP encourages modular development of robotics
software

* Provides OS and build tool independence

" OgSYS .
- Also some /anguage independence comtmsars IR

B — RobotCub.org

WX

RobotCub

Modularity

* The opposite of a modular system is a coupled one.

* Ina "coupled” system, changes in one part
trigger changes in another.

- Coupling leads to complexity
- Complexity leads to confusion

- Confusion leads to suffering
* This is the path to the Dark Side

t*‘.k
Cogsys RN

A RobotCub.org

KX
" Why Modularity for Robots?

* Robot code is notoriously hardware-specific and
task-specific

- But hardware and target tasks change quickly, even
within the lifetime of one project

* Our humanoid robots are far more complex than one
person can build and maintain, both in terms of
hardware and software

* They need to be modular

.E t* * *
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

wE
™ Modularity

* Modular approaches to robotics:
- Player/Stage (mobile robotics)

* Robot control (Khepera, Pioneer), simulator

- Orocos (industrial robotics)

* Real-time control, kinematics library, other libs
- YARP (humanoid robotics)

SOURCE: Chad Jenkins, June 11, 2005, Workshop Introduction
Robotics 2005 Workshop on Modular Foundations for Control and Perception

.E *ir‘i*
Cogsys RN
Cognitive Systems el

B — RobotCub.org

TX
“*“Bscaping the Operating System

* We shield code from the details of the operating
system it runs on
- Then individual projects can use whichever OS we prefer

or need (e.g. specific devices or libraries may only be
supported on one OS)

- We shield software from the details of the “build
tools” used

- Visual Studio (Microsoft) people and emacs/g++ (Linux
etc.) people can finally be friends

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

WX

RobatCub OS independence

+ Start from ACE - the "Adaptive
Communication Environment”

- Free and Open Source

- Widely used, widely tested

* YARP uses ACE in its implementation, but
doesn’t require YARP users to to so

- ACE is big, complex, daunting, changing

- You can understand and use YARP without

understanding ACE
Cogsys EEEES

Cognitive Systems

B RobotCub.org

WX

e Build tool independence

CMake

Cross-platform Make

- Start from CMake

* Free, Open Source

 CMake lets us describe our programs and libraries in
a cross-platform way

 CMake takes care of creating the makefiles or
workspaces needed by your preferred development
environment

.E t* * “
Cogsys RN
Cognitive Systems * %

. RobotCub.org

WX

e Build tool independence

LINUX:
Makefiles,
Kdevelop

files, ...

WINDOWS:
Project MSVC files,
description Borland files,

A 4

OSX:
Makefiles,
Xcode files,

Cogsys
Cognitive Systsms

RobotCub.org

WX

% Tntegrating other libraries

* With CMake, we can easily include other libraries in
a cross-platform way

- "OpenCV" computer vision library
- "Boost" peer-reviewed libraries
- "OpenGL" graphics library

- "G TK" windowing library ...

» For YARP, we expect users will exploit such
libraries, but minimize our own use of them (so as

not to force their choice)

.E *ir‘i*
Cogsys RN
Cognitive Systems el

B RobotCub.org

KX
“**“Beyond the Operating System

» ACE decouples source code from OS
» CMake decouples compilation from OS

- But, for humanoid robotics, our effective "OS" also
includes:

- Many special hardware devices

- A (typically ever-changing) network of computers

* YARP tries to decouple our code from this "OS"

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

HX
“**“Beyond the Operating System

* YARP shields programs from the details of how
they communicate

- We can then reroute this "plumbing” as we wish, e.g. to
send output to new programs

- YARP shields users from the details of the devices
they control

- The devices can then be replaced over time by comparable
alternatives; user code may be useful fo others

.E t**-*
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

R;ﬁggommunicaﬂon independence:
the Observer pattern

Observer 1
data source, or Observer 2
stream of events
Observer N
Cogsys IR

Cognitive Systems "y n"

B — RobotCub.org

WX
> YARP Ports

* We follow the Observer design pattern.

» Special "Port" objects deliver data to:

- Any number of observers (other "Port”s) ...
- ... in.any number of processes ...
- ... distributed across any humber of computers ...

- using any of several underlying communication protocols
with different technical advantages

- This is called the YARP Network

.E *ir‘i*
Cogsys RN
Cognitive Systems el

B — RobotCub.org

WX

RobotCub A simple example

» In this simple example the “"yarp” command line utility is
used to create yarp ports ..

yvarp write /seminar/w yvarp read /seminar/r

/seminar/w @

yarp connect /seminar/w /seminar/r

.. and connect them together

+ All output from the write port is sent to the read port

.E t**-*
Cogsys RN
Cognitive Systems el

B — RobotCub.org

WX

RobotCub A simple example

@ yarp connect /seminar/w /summer

* The output from /seminar/w could at the same time be sent
to another process through another port

.E *ir‘i*
Cogsys RN
Cognitive Systems el

B — RobotCub.org

R;ﬁgb In code (C++)

* Here is some code that opens a port and writes to it

#include <yarp/os/all.h>
#include <stdio.h>
using namespace yarp::0S;

int main() {
Network::init () ;

BufferedPort<Bottle> in;
BufferedPort<Bottle> out;
in.open("/in");
out .open ("/out") ;

// Connect the ports so that anything written from /out arrives to /in
Network: :connect ("/out","/in") ;

// Send one "Bottle" object.

Bottle& outBotl = out.prepare(); // Get the object

outBotl.fromString ("hello world"); // Set it up the way we want
out.write () ; // Now send it on its way

// Read the object
Bottle *inBotl = in.read();
printf ("Bottle 1 is: %s\n", inBotl->toString().c_str());

Network::fini () ;
return 0O; l

) RobotCub.org

R;%ggb Message in a bottle: an aside

—

- &) g At e .-EF"-E—E'-—'-"_-_ : . .
ﬁ%ﬁ%ﬁi}%ﬁénhtaiﬁah@ from { Messagdes In ZARP Gr'e“ d
i S aTaanS ok com wrapped Ih objects calle

NS "bottles”
7 IR + From the YARP
documentation:

"The name of this class comes
from the idea of throwing a
‘message in a bottle" into the
network and hoping it will
eventually wash ashore
somewhere else. In the very
early days of YARP, that is
what communication felt like. "

Day 267: Afier sending out that message in a
bottle stating my location, I've been bombarded o
R g BNE
with junk mail, Cogsys
Cognitive Systems

B — RobotCub.org

Rﬁ:@gb Typical network of ports

machine 2: linux
machine 1: linux motor_control

tracker .
/motor/position
@er/position
machine 1: linux

yarpdev yarpview
Qamera\ >@kerlimag\e >Qiewera
/ mcast / udb
\\\ yarpview
mcast

. i /viewerD
* Connections can use different protocols
» Ports belong to processes —
. . C
» Processes can be on different machines/os cogre s

RobotCub.org

HX
“**“Beyond the Operating System

- YARP shields users from the details of the devices
they control

- The devices can then be replaced over time by comparable
alternatives; user code may be useful fo others

.E t**-*
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

WX

RobotCub Another example ©

* Create a (fake) frame grabber using yarpdev e.g.

- yarpdev —-device test_grabber —-framerate 20

- creates a device using a generic factory method
- wraps the device in a generic network interface

- Open a viewer which accept images on its input port
and displays them

- yarpview —-name /viewerl

» Connect the grabber and viewer

- yarp connect /grabber /viewerl mcast

- the optional parameter selects the communication method

.E *ir‘i*
Cogsys RN
Cognitive Systems el

B RobotCub.org

WX
RoboiCub YARP Devices

* There are three separate concerns related to
devices in YARP:
- Implementing specific drivers for particular devices
- Defining interfaces for device families

- Implementing network wrappers for interfaces

.E *ir‘i*
Cogsys RN
Cognitive Systems el

) RobotCub.org

WX

RobotCub

1: implementing drivers

* The first step, creating drivers for particular
devices, is obvious; every robotics project needs to
interface with hardware somehow.

- Cameras, microphones
- Motors, encoders

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

WX

Rebeie T 21 families of devices

* The second step, defining interfaces for families of
devices, is important in the longer term.

» If you change your camera or your motor control
board, how much of your code needs to change t00?

» If you view your devices through well thought out
interfaces, the impact of device change can be
minimized.

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B RobotCub.org

WX

RobotCub

“Get an image”

Interface
(IFrameGrabberlmage)

Example: image sources

\
Picolo
framegrabber N
> specific
hardware
DragonFly
fireware camera
<
| OpenCV Grabber widely
library interface supported
> libraries
FFMPEG Grabber for accessing
library interface IEtgfs SelEelE:
_/
Server/Remote any image source,
network wrapper on another machine
TestGrabber fake source for
fake images testing
Cogsys
Cognitive Systems

B — RobotCub.org

WX

RobotCub E I . d :
xample: audio sources
\
Microphone
(windows version) N
> specific
. hardware
Microphone
(linux version)
(13 Eh <
G?tta ?ound | PortAudio widely
nterface - :
(IAudioGrabberSound) “brary Interface guppprted
> libraries
FFMPEG Grabber for accessing
library interface audio sources
_
Server/Remote any image source,
network wrapper on another machine

Cogsys
Cognitive Systems

B — RobotCub.org

WX

T 30 network wrappers

» The third step, network wrappers, is important to
give flexibility.

* You can scale up your computing cluster, or isolate
hardware devices that don't play well together, or
have specific OS dependencies etc.

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

WX

A0 Two Views

- YARP offers two views of a robot

- A set of devices which you can control or query
according to a choice of interfaces (device view)

- If you are responsible for configuring and starting
devices, this is the focal device view

» If configuration and starting-up/shutting-down is
packaged with the robot, so you don't have to take
care of it, this is the remote device view

- A set of ports to which you can connect and get
data or send commands (port view)

Cogsys IREEE
Cognitive Systems el

B — RobotCub.org

WX

RobotCub Devices

- Local and Remote devices

Server Network
Wrapper

YARP Device

Device Control
Code

Specific Methods

Generic Methods

Remote Network
Wrapper

Generic Methods

. RobotCub.org

WX

RobotCub Modularity revisted

* A device driver implements the DeviceDriver interface at a minimum and
also any other interfaces it is going to provide

class FakeFrameGrabber : public yarp::dev::IFrameGrabberImage,
public yarp::dev::DeviceDriver {

 In code, you open a device like this:

Property config.fromString (" (device fake_grabber) (w 640) (h 480)");
PolyDriver dd(config);

IFrameGrabberImage *grabberInterface;
dd.view (grabberInterface);

» This starts and configures the device using a generic device
factory method using the options you select

* Then views the generic device as one that implementssihe
generic IFrameGrabber interface o S0T5YS

. RobotCub.org

WX

RobotCub

Modularity revisted

A device driver implements the DeviceDriver interface at a minimum and
also any other interfaces it is going to provide

class FakeFrameGrabber public yarp::dev::IFrameGrabberImage,

public yarp::dev::DeviceDriver {

..code to implement open(),

close () methods for DeviceDriver and
getImage (),

width () and height () methods for IFrameGrabberImage

* You can open this device and just use it without any bureaucracy:

FakeFrameGrabber fakey;
fakey.open(640,480);
ImageOf<PixelRgb> img;
fakey.getImage (1mqg) ;

Cogsys
Cognitive Systems

B RobotCub.org

WX

RobotCub Modular'iTy revisted

* But, If we're smart, we'd make as much of our code as possible depend
just on the interface IFrameGrabberImage, so that we can reuse it or
substitute in a different framegrabber later:

» This is a standard software engineering technique for minimizing
unnecessary coupling between modules.

// creation and configuration —-- depends on specific device type
FakeFrameGrabber fakey;

fakey.open (640, 480);
IFrameGrabberImage& genericGrabber = fakey;

// now we only care that our device implements IFrameGrabberImage
ImageOf<PixelRgb> imgj;

genericGrabber.getImage (1mg) ;

Cogsys
Cognitive Systems

B RobotCub.org

WX

RobotCub Modular'iTy revisted

But, we can go further:

In order to open the device using the generic factory, we simply register
it with YARP p 7 J Y AU

DriverCreator *fakey_factory =
new DriverCreatorOf<FakeFrameGrabber>("fakey","grabber","FakeFrameGrabber");
Drivers::factory().add(fakey_factory); // hand factory over to YARP

We can open the device directly with default parameters:
PolyDriver dd("fakey");

With some configuration parameters
Property config("(device fakey) (w 640) (h 480)");

PolyDriver dd(config);

Or even with a network grabber so that is is available on the network
Property config("(device grabber) (subdevice fakey) (w 640) (h 480)");
PolyDriver dd(config);

. RobotCub.org

WX

RobotCub Port view

* Of course a process could start the device, grab frames
from the device and make them available on a port.

//code as above opens a port viewed through “grabber_interface”

BufferedPort< ImageOf<PixelRgb> > outPort;
outPort.open (“/grabber/img”) ;

1f (grabberInterface !'= NULL) {
ImageOf<PixelRgb> imgln;

while (grabber->getImage (imgIn)) {
// Buffered ports require that you get the next

// outgoing object to put your data in
ImageOf<PixelRgb>& imgOut = outPort.prepare();

imgOut.copy (imgln) ;

/ Actually send out the image on the port
outPort.write () ;

}

BNE
Cogsys
Cognitive Systems

B — RobotCub.org

WX
RobotCub YARP Network

External YARP

> processes
(e.g. monitoring, logging)

“Brain”
(YARP processes on a robot)

Q Foreign
: ~ “Edge”
A < O processes

Cogsys
Cognitive Systems

RobotCub.org

"R
“**“The "Edge" of a YARP Network

» To participate in a YARP Network, it is not
necessary to use C++

- The YARP library can be "wrapped” for Java, Matlab (via
Java), Python, Perl, C#, Chicken...

» Tt is also simple to communicate with Ports without
using any YARP code

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B RobotCub.org

KX
s ACE+CMake+Libraries

- With ACE, CMake, and appropriate libraries, we are
as portable as Java

* Why program in C/C++?

- Flexible: as high-level or low-level as we need

- And for robotics we often need to go quite low-level, e.g.
to interface with devices

* YARP makes effort to support other languages via
bindings and protocol documentation

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B RobotCub.org

WX The "Edge” of a YARP

RobotCub
Network

* User can implement just enough to make a
connection to a single Port

- Easy! Ports support several protocols, so just use the
simplest one - a trivial text-mode protocol

- Don't get efficiencies of more complex protocols but
that's often okay
» Called "Edge"” of the Network since it is not a true
Port, just a connection going "off the map”

.E t**-*
Cogsys RN
Cognitive Systems * %

B RobotCub.org

WX

RobotCub

"Edge"” Example

— CONNECT foreigner —

foreign

tcp socket

(e.g. in Perl)

d
[set] [pos] 3 10.9

Cogsys
Cognitive Systems

) RobotCub.org

R;%;gb What can YARP do for me?

* Help you write robot control code that will last and can be
shared

* Let you easily spread processes over many machines

- Audio processing on one, object detection on another, tight-loop
control on a dedicated machine, etc.

» Even if you don't want to control robots, the networking code
could be useful in itself

* Free yourself from the tyranny of the operating system for
which your control drivers were written

+ Make the world a better, friendlier place ... :-)

.E *ir‘i*
Cogsys RN
Cognitive Systems el

B RobotCub.org

wE
" How to get YARP

Download:
http://yarp0.sourceforge.net

Or via CVS

See the documentation ...

Documentation:
http://yarp0.sourceforge.net/specs/dox/user/html/

More notes at the summer school site:
http://eris.liralab.it/wiki/VVVO06

.E *ir‘i*
Cogsys RN
Cognitive Systems * %

B — RobotCub.org

WX

RobotCub

Thank you all for your attention ...

Please come and ask me if you need any help

with installing or using YARP

** * c*
Cogsys IR
Cognitive Systems

e RobotCub.org

