Multiprocessor

0S 2003

Multiple processor systems

* Why? Clock speed limit:
—10GHz — 2cm chip size
—100GHz — 2mm chip size
— 1THz — <100um chip size

* In practice, we could put many
processors together

08 2003

Architectures

-
l
% Shared i eeeeeeee n 4 Internet H.
% memory i n 4 H.

] [:]

Shared memory

Tightly coupled

Loosely coupled

0S 2003

What does each process sees

* A process running on a CPU sees:
— Usual virtual memory (paged)

— Can write in memory and read back a
different value (another process changed it)
+ IPC

— Organize shared memory (OS)

08 2003

BUS based MP architecture

[cPU| [cPU| | Mem | cpU | [CPU| | Mem |
Bus Bus
2 CPUs is fine, 64 is not [cache
bus contention
e
Bus
[cache

|:| private memory

0S 2003

Cache

Try to keep most used pages (lines usually) in
cache

When memory in changed (written), other
caches need to be notified of the change

There are specific cache transfer protocols

If local memory is present the compiler should
do a good job at separating what goes in main
memory versus what stays in local memory

08 2003

Crossbar switches

1 Q

v [[na] [| [][]

No conflicts
(if memory is available)

)

A\

®] [¢] [¢] o] [¢] 2]

—_

Processor n connects to memory q

0S 2003 7

UMA, NUMA classes

+ UMA (uniform memory access):

— Uniform access, read/write

— Memory accesses have all the same characteristics
* NUMA (non-uniform):

— Single address space visible to all CPUs

— Access to remote memory is slower than local

— E.g. 100 processors, difficult, then something has to
give, in practice the uniform access time is the
tradeoff

08 2003 8

How 1t works

The memory is split between nodes

Clearly the access to a remote node’s
local memory is slower

A request from one of the nodes has to
either go to the bus, possibly cached, or
to the local memory

Caches need to be up-to-date all the time

0S 2003 9

OS types

* One OS in each CPU, N CPUs operate as N
independent computes
— What happens in loosely coupled MP systems
— No much sharing of memory, CPU cycles, etc. between
processes (e.g. a CPU loaded while others idle)
+ Master-slave
— Single OS, allocating CPUs and memory

— Single data structures (memory page tables, process tables,
etc.)

— Only the master runs the OS
* Symmetric multiprocessing (e.g. Windows, Linux)
— SMP, each CPU can run the OS

— Make sure updates of e.g. page tables are done consistently
(mutexes, different parts and different critical regions within

the OS)

08 2003 10

MP synchronization

+ Appropriate synchronization procedure are
needed
— Disabling interrupt doesn’t work

+ TSL instruction, locking also the BUS while
reading/writing atomically
— Lock_bus
— Read, Write
— Unlock_bus

* Otherwise, if the bus doesn’t support TSL,
there’s always Peterson’s solution

0S 2003

11

MP scheduling

* 2-D problem
— Multiplexing in time (time sharing)
— Multiplexing in space (space sharing)
* Multiple threads in parallel on different CPUs
+ Take decisions also on how much processes and
groups are related
— Different users might start different processes
— Same user starting a group of processes
* The scheduler should avoid blocking CPUs simply
because a process is holding a lock
+ Also, it might make sense to keep the same process
recurrently running on the same processor

08 2003

12

Scheduling (for time-sharing)

« Give additional quanta to processes
holding (global) locks to avoid blocking
other CPUs

— Smart scheduling

* CPU affinity

— Keep the same process on the same CPU to
exploit cache at best

0S 2003 13

Scheduling (for space sharing)

* Schedule multiple threads (of a single
process) in parallel to many CPUs at
once

* In pure space-sharing there’s no
multiprogramming on the CPUs

— E.g. if we have 64K processors there’s no
much need of multiprogramming

* Mix of space and time sharing

08 2003 14

Hyper-threading

* PIV processors
+ Execute 2 threads at once

* Since many instructions do different

things they also use different subset of
the CPU

 Idea! Why not keep most of the CPU
always busy by allowing the execution of
another thread

* This 1s clearly all done in hardware

0S 2003 15

Software

* Send/receive model
— Two blocking calls — send/receive messages

+ Asynchronous
— The send returns immediately

— The message buffer of course cannot be
modified until the message is actually sent

— Buffering issues (double, triple buffering)

* Copy on write: only copy the buffer if the code
tries to write on it

08 2003 16

RPC

* Remote procedure call

network

0S 2003 17

Complications

* Based on RPC
— DCOM (Microsoft)
— Corba (Open standard)

- Same as RPC but object oriented

+ Language to describe parameters, functions
and objects

* The marshaling of parameters is simpler

— Parameters need to be packed in a uniform format
to be shipped across network and possibly different
architectures

08 2003 18

