22 INTRODUCTION CHAP. 1

1.4 SOFTWARE CONCEPTS

Hardware for distributed systems is important, but it is software that largely
determines what a distributed system actually looks like. Distributed systems are
very much like traditional operating systems. First, they act as resource
manager s for the underlying hardware, alowing multiple users and applications
to share resources such as CPUs, memories, peripheral devices, the network, and
data of al kinds. Second, and perhaps more important, is that distributed systems
attempt to hide the intricacies and heterogeneous nature of the underlying hard-
ware by providing avirtual machine on which applications can be easily executed.

To understand the nature of distributed systems, we will therefore first take a
look at operating systems in relation to distributed computers. Operating systems
for distributed computers can be roughly divided into two categories: tightly-
coupled systems and loosely-coupled systems. In tightly-coupled systems, the op-
erating system essentially tries to maintain asingle, global view of the resources it
manages. Loosely-coupled systems can be thought of as a collection of computers
each running their own operating system. However, these operating systems work
together to make their own services and resources available to the others.

This distinction between tightly-coupled and loosely-coupled systems is
related to the hardware classification given in the previous section. A tightly-
coupled operating system is generally referred to as adistributed operating sys
tem (DOS), and is used for managing multiprocessors and homogeneous multi-
computers. Like traditional uniprocessor operating systems, the main goa of a
distributed operating system is to hide the intricacies of managing the underlying
hardware such that it can be shared by multiple processes.

The loosely-coupled network operating system (NOS) is used for hetero-
geneous multicomputer systems. Although managing the underlying hardware is
an important issue for a NOS, the distinction from traditional operating systems
comes from the fact local services are made available to remote clients. In the fol-
lowing sections we will first take a look at tightly-coupled and loosely-coupled
operating systems.

To actually come to a distributed system, enhancements to the services of net-
work operating systems are needed such that a better support for distribution
transparency is provided. These enhancements lead to what is known as
middleware, and lie at the heart of modern distributed systems. Middleware is
also discussed in this section Fig. 1-10 summarizes the main issues with respect to
DOS, NOS, and middleware.

1.4.1 Distributed Operating Systems
There are two types of distributed operating systems. A multiprocessor

oper ating system manages the resources of a multiprocessor. A multicomputer
operating system is an operating system that is developed for homogeneous

SEC. 14 SOFTWARE CONCEPTS 23

System Description Main goal
DOS Tightly-coupled operating system for multi- Hide and manage
processors and homogeneous multicomputers | hardware resources
NOS Loosely-coupled operating system for hetero- Offer local services
geneous multicomputers (LAN and WAN) to remote clients
Middleware | Additional layer atop of NOS implementing Provide distribution
general-purpose services transparency

Figure 1-10. An overview between DOS (Distributed Operating Systems),
NOS (Network Operating Systems), and middleware.

multicomputers. The functionality of distributed operating systems is essentially
the same as that of traditional operating systems for uniprocessor systems, except
that they handle multiple CPUs. Let us therefore briefly review uniprocessor
operating systems first. An introduction to operating systems for uniprocessors
and multiple processors can be found in (Tanenbaum, 2001).

Uniprocessor Operating Systems

Operating systems have traditionally been built to manage computers with
only a single CPU. The main goal of these systems is to allow users and applica-
tions an easy way of sharing resources such as the CPU, main memory, disks, and
peripheral devices. Sharing resources means that different applications can make
use of the same hardware in an isolated fashion. To an application, it appears as if
it has its own resources, and that there may be several applications executing on
the same system at the same time, each with their own set of resources. In this
sense, the operating system is said to implement a virtual machine, offering mul-
titasking facilities to applications.

An important aspect of sharing resources in such a virtual machine, is that
applications are protected from each other. For example, it is not acceptable that if
two independent applications A and B are executed at the same time, that A can
ater the data of application B by simply accessing that part of main memory
where that data are currently stored. Likewise, we need to ensure that applications
can make use of facilities only as offered by the operating system. For instance, it
should generally be prevented that an application can directly copy messages to a
network interface. Instead, the operating system will provide communication
primitives, and only by means of these primitives should it be possible to send
messages between applications on different machines.

Consequently, the operating system should be in full control of how the
hardware resources are used and shared. Therefore, most CPUs support at least
two modes of operation. In kernel mode, al instructions are permitted to be exe-
cuted, and the whole memory and collection of all registers is accessible during

24 INTRODUCTION CHAP. 1

execution. In contrast, in user mode, memory and register access is restricted. For
example, an application will not be allowed to access memory locations that lie
outside a range of addresses (set by the operating system), or directly access
device registers. While executing operating system code, the CPU is switched to
kernel mode. However, the only way to switch from user mode to kernel mode is
through system calls as implemented by the operating system. Because system
calls are the only basic services an operating system offers, and because the
hardware helps to restrict memory and register access, an operating system can be
put into full control.

Having two modes of operation has led to organizations of operating systems
in which virtually all operating system code is executed in kernel mode. The
result is often a huge, monolithic program that is run in a single address space.
The drawback of this approach is that it is often difficult to adapt the system. In
other words, it is hard to replace or adapt operating system components without
doing a complete shutdown and possibly even a full recompilation and re-
installation. Monolithic operating systems are not a good idea from the perspec-
tive of openness, software engineering, reliability, or maintainability.

A more flexible approach is to organize the operating system into two parts.
The first part consists of a collection of modules for managing the hardware but
which can equally well be executed in user mode. For example, memory manage-
ment basically consists of keeping track of which parts of memory have been alo-
cated to processes, and which parts are free. The only time we need to execute in
kernel mode is when the registers of the MMU are set.

The second part of the operating system consists of a small microkernel con-
taining only the code that must execute in kernel mode. In practice, a microkernel
need only contain the code for setting device registers, switching the CPU
between processes, manipulating the MMU, and capturing hardware interrupts. In
addition, it contains the code to pass system calls to calls on the appropriate user-
level operating system modules, and to return their results. This approach leads to
the organization shown in Fig. 1-11.

No direct data exchange between modules

) \

"
A _Q

N
y

OS interface

User Memory Process File module
application module module User mode
- 5 ______________
]
/V Kernel mode
System call -] Microkernel

Hardware

Figure 1-11. Separating applications from operating system code through a microkernel.

SEC. 14 SOFTWARE CONCEPTS 25

Their are many benefits to using microkernels. An important one is its flexi-
bility: because a large part of the operating system is executed in user mode, it is
relatively easy to replace a module without having to recompile or re-install the
entire system. Another important issue is that user-level modules can, in principle,
be placed on different machines. For example, we can easily place a file manage-
ment module on a different machine than the one managing a directory service. In
other words, the microkernel approach lends itself well to extending a uniproces-
Sor operating system to distributed computers.

Microkernels have two important disadvantages. First, they are different from
the way current operating systems work, and trying to change any well-entrenched
status quo always meets massive resistance (“‘If this operating system is good
enough for my grandfather, it is good enough for me.’”’). Second, microkernels
have extra communication and thus a slight performance loss. However, given
how fast modern CPUs are, a 20% performance lossis hardly fatal.

Multiprocessor Operating Systems

An important, but often not entirely obvious extension to uniprocessor operat-
ing systems, is support for multiple processors having access to a shared memory.
Conceptually, the extension is simple in that all data structures needed by the
operating system to manage the hardware, including the multiple CPUs, are
placed into shared memory. The main difference is that these data are now acces-
sible by multiple processors, so that they have to be protected against concurrent
access to guarantee consistency.

However, many operating systems, especially those for PCs and workstations,
cannot easily handle multiple CPUs. The main reason is that they have been
designed as monolithic programs that can be executed only with a single thread of
control. Adapting such operating systems for multiprocessors generaly means
redesigning and reimplementing the entire kernel. Modern operating systems are
designed from the start to be able to handle multiple processors.

Multiprocessor operating systems aim to support high performance through
multiple CPUs. An important goal is to make the number of CPUs transparent to
the application. Achieving such transparency is relatively easy because the com-
munication between different (parts of) applications uses the same primitives as
those in multitasking uniprocessor operating systems. The idea is that all com-
munication is done by manipulating data at shared memory locations, and that we
only have to protect that data against simultaneous access. Protection is done
through synchronization primitives. Two important (and equivalent) primitives are
semaphores and monitors.

A semaphor e can be thought of as an integer with two operations, down and
up. The down operation checks to see if the value of the semaphore is greater
than 0. If so, it decrements its value and continues. If the value is 0, the calling
process is blocked. The up operation does the opposite. It first checks whether

26 INTRODUCTION CHAP. 1

there are any now-blocked processes that were unable to complete an earlier down
operation. If so, it unblocks one of them and then continues. Otherwise, it simply
increments the semaphore value. An unblocked process can simply continue by
returning from the down operation. An important property of semaphore opera-
tions is that they are atomic, meaning that once a down or up operation has
started, no other process can access the semaphore until the operation is com-
pleted (or until a process blocks).

Programming with semaphores to synchronize processes is known to be
error-prone except when used for ssimply protecting shared data. The main prob-
lem is that the use of semaphores can easily lead to unstructured code, similar to
that resulting from abundantly using the infamous goto statement. As an alterna-
tive, many modern systems that support concurrent programming provide alibrary
for implementing monitors.

Formally, a monitor is a programming-language construct, similar to an ob-
ject in object-based programming (Hoare, 1974) A monitor can be thought of as a
module consisting of variables and procedures. Variables can be accessed only by
calling one of the monitor’'s procedures. In this sense, a monitor is similar to an
object: an object has its own private data, which can be accessed only by means of
methods implemented by that object. The difference with objects, is that a moni-
tor will allow only a single process at a time to execute a procedure. In other
words, if aprocess A is executing a procedure contained in a monitor (we say that
A has entered the monitor), and a process B also calls one of the monitor’s pro-
cedures, B will be blocked until A completes (i.e., until A leaves the monitor).

As an example, consider a simple monitor for protecting an integer variable as
shown in Fig. 1-12. The monitor contains a single (private) variable count that
can be accessed only by means of three (public) procedures for respectively read-
ing its current value, incrementing it by 1, or decrementing it. The monitor con-
struct guarantees that any process that calls one of these procedures can atomi-
cally access the private data contained in the monitor.

monitor Counter {
private:
int count = 0;
public:
int value() {return count;}
void incr() {count=count +1;}
void decr() {count=count-1;}

Figure 1-12. A monitor to protect an integer against concurrent access.

So far, monitors are useful for simply protecting shared data. However, more
is needed for conditionally blocking a process. For example, suppose we wish to

SEC. 14 SOFTWARE CONCEPTS 27

block a process calling the operation decr when it finds out that the value of count
has dropped to 0. For such purposes, monitors also contain what is known as con-
dition variables, which are special variables with two operations wait and signal.
When process A is inside a monitor, and calls wait on a condition variable con-
tained in that monitor, A will block and give up its exclusive access to the moni-
tor. Consequently, a process B that was waiting to enter the monitor can then con-
tinue. At a certain point, B may unblock process A by doing a signal on the condi-
tion variable that A is waiting on. To avoid having two processes active inside the
monitor, we adopt the scheme by which the signaling process must leave the mon-
itor. We can now adapt our previous example. It can be verified that the monitor
shown in Fig. 1-13 is actually an implementation of a semaphore as discussed
above.

monitor Counter {
private:
int count = 0O;
int blocked_procs = 0;
condition unblocked;
public:
int value() { return count; }

void incr() {
if (blocked_procs == 0)
count = count + 1;
else
signal(unblocked);

}

void decr() {

if (count == 0) {
blocked_procs = blocked_procs + 1;
wait(unblocked);
blocked_procs = blocked_procs - 1;

else
count = count — 1;

Figure 1-13. A monitor to protect an integer against concurrent access, but
blocking a process.

The drawback of monitors is that they are programming-language constructs.
For example, Java provides a notion of monitors by essentially allowing each
object to protect itself against concurrent access through synchronized statements,

28 INTRODUCTION CHAP. 1

and operations wait and notify on objects. Library support for monitorsis generally
given by means of simple semaphores that can only take on the values 0 and 1,
commonly referred as mutex variables, with associated lock and unlock opera-
tions. Locking a mutex will succeed only if the mutex is 1, otherwise the calling
process will be blocked. Likewise, unlocking a mutex means setting its value to 1,
unless some waiting process could be unblocked. Condition variables with their
associated operations are also provided as library routines. More information on
synchronization primitives can be found in (Andrews, 2000).

Multicomputer Operating Systems

Operating systems for multicomputers are of a totally different structure and
complexity than multiprocessor operating systems. This difference is caused by
the fact that data structures for systemwide resource management can no longer
be easily shared by merely placing them in physically shared memory. Instead,
the only means of communication is through message passing. Multicomputer
operating systems are therefore generally organized as shown in Fig. 1-14.

Machine A Machine B Machine C
| |

Distributed applications

Distributed operating system services

Kernel Kernel Kernel

Network

Figure 1-14. Genera structure of a multicomputer operating system.

Each node has its own kernel containing modules for managing local
resources such as memory, the local CPU, a local disk, and so on. Also, each
node has a separate module for handling interprocessor communication, that is,
sending and receiving messages to and from other nodes.

Above each local kernel is a common layer of software that implements the
operating system as a virtual machine supporting parallel and concurrent execu-
tion of various tasks. In fact, as we shall discuss shortly, this layer may even pro-
vide an abstraction of a multiprocessor machine. In other words, it provides a
complete software implementation of shared memory. Additiona facilities com-
monly implemented in this layer are, for example, those for assigning a task to a
processor, masking hardware failures, providing transparent storage, and genera

SEC. 14 SOFTWARE CONCEPTS 29

interprocess communication. In other words, facilities that one would normally
expect from any operating system.

Multicomputer operating systems that do not provide a notion of shared
memory can offer only message-passing facilities to applications. Unfortunately,
the semantics of message-passing primitives may vary widely between different
systems. It is easiest to explain their differences by considering whether or not
messages are buffered. In addition, we need to take into account when, if ever, a
sending or receiving process is blocked. Fig. 1-15 shows where buffering and
blocking can take place.

Possible
synchronization
Sender $ - point \\ Receiver
Sender —_ _ | Receiver
buffer | — — buffer
$ s2 # s3
L]
Network

Figure 1-15. Alternatives for blocking and buffering in message passing.

There are only two places where messages can possibly be buffered: at the
sender’s side or at the receiver’s side. This leads to four possible synchronization
points, that is, points at which a sender or receiver can possibly block. If thereisa
buffer at the sender’s side, it makes sense to block the sender only when the
buffer is full, which is shown as synchronization point S1 in Fig. 1-15. Alterna-
tively, putting a message into a buffer may return a status indicating whether the
operation succeeded. This avoids the sender being blocked when the buffer was
aready full. Otherwise, when there is no sender buffer, there are three alternative
points to block the sender: the message has been sent (shown as &2), the message
has arrived at the receiver (synchronization point S3), or the message has been
delivered to the receiver (at point $4). Note that if blocking takes place at either
2, S3, or A4, having a buffer at the sender’ s side does not make any sense.

Blocking the receiver makes sense only at synchronization point S3, which
can happen only when there is no receiver buffer, or when the buffer is empty. An
alternative is to let the receiver poll for incoming messages. However, doing so
often results in a waste of CPU time, or responding too late to incoming messages,
which in turn may lead to buffer overflows resulting in incoming messages having
to be dropped (Bhoedjang €t a., 1998).

Another issue that is important for understanding message-passing semantics,
is whether or not communication isreliable. The distinguishing feature of reliable
communication is that the sender is given a guarantee that its messages will be

30 INTRODUCTION CHAP. 1

received. In Fig. 1-15, this means that all messages are guaranteed to make it to
synchronization point S3. With unreliable communication, no such guarantee is
given. When there is a buffer at the sender’s side communication can either be
reliable or not. Likewise, the operating system need not guarantee reliable com-
munication when the sender is blocked at S2.

However, if the operating system blocks a sender until messages arrive at
either S3 or &4, it must guarantee reliable communication, or we may otherwise
find ourselves in a situation in which the sender is waiting for confirmation of
receipt or delivery, while in the meantime its message had been lost during
transmission. The relations between blocking, buffering, and guarantees regard-
ing reliable communication are summarized in Fig. 1-16.

Synchronization point Send buffer | Reliable comm. guaranteed?
Block sender until buffer not full Yes Not necessary
Block sender until message sent No Not necessary
Block sender until message received No Necessary
Block sender until message delivered | No Necessary

Figure 1-16. Relation between blocking, buffering, and reliable communica-
tion.

Many of the issues involved in building multicomputer operating systems are
equally important for any distributed system. The main difference between multi-
computer operating systems and distributed systems is that the former generally
assume that the underlying hardware is homogeneous and is to be fully managed.
Many distributed systems, however, are often built on top of existing operating
systems, as we will discuss shortly.

Distributed Shared Memory Systems

Practice shows that programming multicomputers is much harder than pro-
gramming multiprocessors. The difference is caused by the fact that expressing
communication in terms of processes accessing shared data and using simple syn-
chronization primitives like semaphores and monitors is much easier than having
only message-passing facilities available. Issues like buffering, blocking, and reli-
able communication only make things worse.

For this reason, there has been considerable research in emulating shared-
memory on multicomputers. The goal is to provide a virtual shared memory
machine, running on a multicomputer, for which applications can be written using
the shared memory model even though this is not present. The multicomputer
operating system plays a crucia role here.

One approach is to use the virtual memory capabilities of each individual
node to support a large virtual address space. This leads to what is called a page-

SEC. 14 SOFTWARE CONCEPTS 31

based distributed shared memory (DSM). The principle of page-based distrib-
uted shared memory is as follows. In a DSM system, the address space is divided
up into pages (typically 4 KB or 8 KB), with the pages being spread over all the
processors in the system. When a processor references an address that is not
present locally, atrap occurs, and the operating system fetches the page contain-
ing the address and restarts the faulting instruction, which now completes success-
fully. This concept isillustrated in Fig. 1-17(a) for an address space with 16 pages
and four processors. It is essentially normal paging, except that remote RAM is
being used as the backing store instead of the local disk.

Shared global address space
lo|1]2]3]4]5]6]7]8]9]10[11]12][13[14]15]

Lol[2][s]f [(2](s][e]| |[[#](z]fxz]} [z3][zs]
@ <€<— Memory

CPU 1 CPU 2 CPU 3 CPU 4

[o]2]s] [allslle]) ([ellzfzef |z3]lzs]
[o]zo] | [e] [12][14]

CPU1 CPU 2 CPU3 CPU 4

[o]2]s] [alls]le]) [allzfae) |z]lzs]
[o]sof | [leJaol | [22f24]

CPU1 CPU 2 CPU 3 CPU4

(©

Figure 1-17. (a) Pages of address space distributed among four machines. (b)
Situation after CPU 1 references page 10. (c) Situation if page 10 is read only
and replication is used.

In this example, if processor 1 references instructions or data in pages 0, 2, 5,
or 9, the references are done locally. References to other pages cause traps. For

32 INTRODUCTION CHAP. 1

example, a reference to an address in page 10 will cause a trap to the operating
system, which then moves page 10 from machine 2 to machine 1, as shown in
Fig. 1-17(b).

One improvement to the basic system that can frequently improve perfor-
mance considerably is to replicate pages that are read only, for example, pages
that contain program text, read-only constants, or other read-only data structures.
For example, if page 10 in Fig. 1-17 is a section of program text, its use by pro-
cessor 1 can result in a copy being sent to processor 1, without the original in pro-
cessor 2's memory being disturbed, as shown in Fig. 1-17(c). In this way, proces-
sors 1 and 2 can both reference page 10 as often as needed without causing traps
to fetch missing memory.

Another possibility isto replicate not only read-only pages, but all pages. As
long as reads are being done, there is effectively no difference between replicating
aread-only page and replicating a read-write page. However, if areplicated page
is suddenly modified, special action has to be taken to prevent having multiple,
inconsistent copies in existence. Typicaly al copies but one are invalidated
before allowing the write to proceed.

Further performance improvements can be made if we let go of strict con-
sistency between replicated pages. In other words, we allow a copy to be tem-
porarily different from the others. Practice has shown that this approach may
indeed help, but unfortunately, can also make life much harder for the program-
mer as he has to be aware of such inconsistencies. Considering that ease of pro-
gramming was an important reason for developing DSM systems in the first place,
weakening consistency may not be a rea aternative. We return to consistency
issues in Chap. 6.

Another issue in designing efficient DSM systems, is deciding how large
pages should be. Here, we are faced with similar trade-offs as in deciding on the
size of pages in uniprocessor virtual memory systems. For example, the cost of
transferring a page across a network is primarily determined by the cost of setting
up the transfer and not by the amount of data that is transferred. Consequently,
having large pages may possibly reduce the total number of transfers when large
portions of contiguous data need to be accessed. On the other hand, if a page con-
tains data of two independent processes on different processors, the operating sys-
tem may need to repeatedly transfer the page between those two processors, as
shown in Fig. 1-18. Having data belonging to two independent processes in the
same page is called false sharing.

After almost 15 years of research on distributed shared memory, DSM
researchers are still struggling to combine efficiency and programmability. To
attain high performance on large-scale multicomputers, programmers resort to
message passing despite its higher complexity compared to programming (virtual)
shared memory systems. It seems therefore justified to conclude that DSM for
high-performance parallel programming cannot fulfill its initial expectations.
More information on DSM can be found in (Protic et al., 1998).

SEC. 14 SOFTWARE CONCEPTS 33

Machine A Page transfer when Machine B
B needs to be accessed
h

v

Page transfer when
A needs to be accessed

[~ Two independent
data items

Figure 1-18. False sharing of a page between two independent processes.

1.4.2 Network Operating Systems

In contrast to distributed operating systems, network operating systems do not
assume that the underlying hardware is homogeneous and that it should be
managed as if it were a single system. Instead, they are generally constructed
from a collection of uniprocessor systems, each with its own operating system, as
shown in Fig. 1-19. The machines and their operating systems may be different,
but they are all connected to each other in a computer network. Also, network
operating systems provide facilities to allow users to make use of the services
available on a specific machine. It is perhaps easiest to describe network operat-
ing systems by taking a closer ook at some services they typically offer.

Machine A Machine B Machine C
Distributed applications
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel
Network

Figure 1-19. General structure of a network operating system.

A service that is commonly provided by network operating systemsisto alow
auser to log into another machine remotely by using a command such as

rlogin machine

The effect of this command is to turn the user’s own workstation into a remote
terminal logged into the remote machine. Assuming the user is sitting behind a

34 INTRODUCTION CHAP. 1

graphical workstation, commands typed on the keyboard are sent to the remote
machine, and output from the remote machine is displayed in a window on the
user’s screen. To switch to a different remote machine, it is necessary to first open
a new window, and then to use the rlogin command to connect to another
machine. The selection of the machine is thus entirely manual.

Network operating systems often also have a remote copy command to copy
files from one machine to another. For example, a command such as

rcp machinel:filel machine2:file2

might copy the file filel from machinel to machine2 and give it the name file2
there. Again here, the movement of files is explicit and requires the user to be
completely aware of where al files are located and where all commands are being
executed.

While better than nothing, this form of communication is extremely primitive
and has led system designers to search for more convenient forms of communica-
tion and information sharing. One approach is to provide a shared, global file sys-
tem accessible from all the workstations. The file system is supported by one or
more machines called file servers. The file servers accept requests from user pro-
grams running on the other (nonserver) machines, caled clients, to read and write
files. Each incoming request is examined and executed, and the reply is sent back,
asillustrated in Fig. 1-20.

File server
Client 1 Client 2 & | Disks on which
shared file system
Request Reply & | is stored
Network

Figure 1-20. Two clients and a server in a network operating system.

File servers generally maintain hierarchical file systems, each with a root
directory containing subdirectories and files. Workstations can import or mount
these file systems, augmenting their local file systems with those located on the
servers. For example, in Fig. 1-21, two file servers are shown. One has a directory
called games, while the other has a directory called work (directory names are
shown in boldface). These directories each contain several files. Both of the
clients shown have mounted both of the servers, but they have mounted them in
different places in their respective file systems. Client 1 has mounted them in its
root directory, and can access them as /games and /work, respectively. Client 2,
like client 1, has mounted work in its root directory, but considers playing games

SEC. 14 SOFTWARE CONCEPTS 35

as something that should perhaps be kept private. It therefore created a directory
called /private and mounted games there. Consequently, it can access pacwoman
using the path /private/games/pacwoman rather than /games/pacwoman.

Client 1 Client 2 Server 1 Server 2
/ / games work
private pacman mail
pacwoman teaching
pacchild research
(@
Client 1 Client 2
/ /
legames r® private/games

work o/—\' WOFKQ/_\

pacman mail pacman mail

pacwoman teaching pacwoman teaching

pacchild research pacchild research
(b) (©

Figure 1-21. Different clients may mount the servers in different places.

While it often does not matter where a client mounts a server in its directory
hierarchy, it is important to notice that different clients can have a different view
of the file system. The name of afile depends on where it is being accessed from,
and how that machine has set up its file system. Because each client machine
operates relatively independently of the others, there is no guarantee that they all
present the same directory hierarchy to their programs.

Network operating systems are clearly more primitive than distributed operat-
ing systems. The main distinction between the two types of operating systems is
that distributed operating systems make a serious attempt to redlize full trans-
parency, that is, provide a single-system view.

The lack of transparency in network operating systems has some obvious
drawbacks. For example, they are often harder to use, as users are required to
explicitly log into remote machines, or copy files from one machine to another.
There is al'so a management problem. Because al machines in a network operat-
ing system are independent, often they can only be managed independently. Asa
consequence, a user can do a remote login to a machine X only if he has an
account on X. Likewise, if a user wants to use only a single password, changing a
password requires changing it explicitly on every machine. In the same line of
reasoning, it is seen that, in general, all access permissions have to be maintained
per machine as well. There is ho simple way of changing permissions once they

36 INTRODUCTION CHAP. 1

are the same everywhere. This decentralized approach to security sometimes
makes it hard to protect network operating systems against malicious attacks.

There are aso some advantages compared to distributed operating systems.
As the nodes in a network operating system are highly independent of each other,
it is easy to add or remove a machine. In some cases, the only thing we need to do
to add a machine is to connect the machine to a common network and, subse-
guently, make its existence known to the other machines in that network. In the
Internet, for example, adding a new server is done precisely in this way. To make
amachine known across the Internet, we need merely provide its network address,
or better, give the machine a symbolic name that we subsequently enter into DNS,
along with its network address.

1.4.3 Middleware

Neither a distributed operating system or a network operating system really
qualifies as a distributed system according to our definition given in Sec. 1.1. A
distributed operating system is not intended to handle a collection of independent
computers, while a network operating system does not provide a view of asingle
coherent system. The question comes to mind whether it is possible to develop a
distributed system that has the best of both worlds: the scalability and openness of
network operating systems and the transparency and related ease of use of distrib-
uted operating systems. The solution is to be found in an additional layer of soft-
ware that is used in network operating systems to more or less hide the heterogen-
eity of the collection of underlying platforms but also to improve distribution
trangparency. Many modern distributed systems are constructed by means of such
an additional layer of what is called middleware. In this section we take a closer
look at what middleware actually constitutes by explaining some of its features.

Positioning Middleware

Many distributed applications make direct use of the programming interface
offered by network operating systems. For example, communication is often
expressed through operations on sockets, which allow processes on different
machines to pass each other messages (Stevens, 1998). In addition, applications
often make use of interfaces to the local file system. As we explained, a problem
with this approach is that distribution is hardly transparent. A solution is to place
an additional layer of software between applications and the network operating
system, offering a higher level of abstraction. Such a layer is accordingly called
middleware. It sitsin the middle between applications and the network operating
system as shown in Fig. 1-22.

Each local system forming part of the underlying network operating system is
assumed to provide local resource management in addition to simple communica-
tion means to connect to other computers. In other words, middleware itself will
not manage an individual node; thisis left entirely to the local operating system.

SEC. 14 SOFTWARE CONCEPTS 37

Machine A Machine B Machine C

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

Figure 1-22. General structure of adistributed system as middlieware.

An important goal is to hide heterogeneity of the underlying platforms from
applications. Therefore, many middleware systems offer a more-or-less complete
collection of services and discourage using anything else but their interfaces to
those services. In other words, skipping the middleware layer and immediately
calling services of one of the underlying operating systems is often frowned upon.
We will return to middleware services shortly.

It isinteresting to note that middleware was not invented as an academic exer-
cise in achieving distribution transparency. After the introduction and widespread
use of network operating systems, many organizations found themselves having
lots of networked applications that could not be easily integrated into a single sys-
tem (Bernstein, 1996). At that point, manufacturers started to build higher-level,
application-independent services into their systems. Typical examples include
support for distributed transactions and advanced communication facilities.

Of course, agreeing on what the right middleware should be is not easy. An
approach is to set up an organization which subsequently defines a common stan-
dard for some middleware solution. At present, there are a number of such stan-
dards available. The standards are generally not compatible with each other, and
even worse, products implementing the same standard but from different
manufacturers rarely interwork. Surely, it will not be long before someone offers
“upperware”’ to remedy this defect.

Middleware Models

To make development and integration of distributed applications as ssimple as
possible, most middleware is based on some model, or paradigm, for describing
distribution and communication. A relatively ssmple model is that of treating
everything as a file. This is the approach originaly introduced in UNIX and

38 INTRODUCTION CHAP. 1

rigorously followed in Plan 9 (Pike et al., 1995). In Plan 9, all resources, includ-
ing 1/0O devices such as keyboard, mouse, disk, network interface, and so on, are
treated as files. Essentially, whether afile islocal or remote makes no difference.
An application opens a file, reads and writes bytes, and closes it again. Because
files can be shared by several processes, communication reduces to simply access-
ing the same file.

A similar approach, but less strict than in Plan 9, is followed by middleware
centered around distributed file systems. In many cases, such middieware is
actually only one step beyond a network operating system in the sense that distri-
bution transparency is supported only for traditional files (i.e., files that are used
for merely storing data). For example, processes are often required to be started
explicitly on specific machines. Middleware based on distributed file systems has
proven to be reasonable scalable, which contributes to its popularity.

Another important early middleware model is that based on Remote Pro-
cedure Calls (RPCs). Inthismodel, the emphasis is on hiding network commun-
ication by allowing a process to call a procedure of which an implementation is
located on a remote machine. When calling such a procedure, parameters are tran-
sparently shipped to the remote machine where the procedure is subsequently exe-
cuted, after which the results are sent back to the caller. It therefore appears as if
the procedure call was executed locally: the calling process remains unaware of
the fact that network communication took place, except perhaps for some loss of
performance. We return to remote procedure calls in the next chapter.

As object orientation came into vogue, it became apparent that if procedure
calls could cross machine boundaries, it should aso be possible to invoke objects
residing on remote machines in a transparent fashion. This has now led to various
middleware systems offering a notion of distributed objects. The essence of dis-
tributed objects is that each object implements an interface that hides all the inter-
nal details of the object from its users. An interface consists of the methods that
the object implements, no more and no less. The only thing that a process sees of
an object isitsinterface.

Distributed objects are often implemented by having each object itself located
on a single machine, and additionally making its interface available on many other
machines. When a process invokes a method, the interface implementation on the
process's machine simply transforms the method invocation into a message that is
sent to the object. The object executes the requested method and sends back the
result. The interface implementation subsequently transforms the reply message
into a return value, which is then handed over to the invoking process. Asin the
case of RPC, the process may be kept completely unaware of the network com-
munication.

What models can do to simplify the use of networked systems is probably best
illustrated by the World Wide Web. The success of the Web is mainly due to the
extremely simple, yet highly effective model of distributed documents. In the
model of the Web, information is organized into documents, with each document

SEC. 14 SOFTWARE CONCEPTS 39

residing at a machine transparently located somewhere in the world. Documents
contain links that refer to other documents. By following a link, the document to
which that link refers is fetched from its location and displayed on the user’s
screen. The concept of a document need not be restricted to only text-based infor-
mation. For example, the Web also supports audio and video documents, as well
as al kinds of interactive graphic-based documents.

We return to middleware paradigms extensively in the second part of the
book.

Middleware Services

There are a number of services common to many middleware systems. Invari-
ably, all middleware, one way or another, attempts to implement access trans-
parency, by offering high-level communication facilities that hide the low-level
message passing through computer networks. The programming interface to the
transport layer as offered by network operating systems is thus entirely replaced
by other facilities. How communication is supported depends very much on the
model of distribution the middleware offers to users and applications. We already
mentioned remote procedure calls and distributed-object invocations. In addition,
many middleware systems provide facilities for transparent access to remote data,
such as distributed file systems or distributed databases. Transparently fetching
documents as is done in the Web is another example of high-level (one-way) com-
munication.

An important service common to all middleware is that of nhaming. Name
services alow entities to be shared and looked up (as in directories), and are com-
parable to telephone books and the yellow pages. Although naming may seem
simple at first thought, difficulties arise when scalability is taken into account.
Problems are caused by the fact that to efficiently look up a name in a large-scale
system, the location of the entity that is named must be assumed to be fixed. This
assumption is made in the World Wide Web, in which each document is currently
named by means of a URL. A URL contains the name of the server where the
document to which the URL refers is stored. Therefore, if the document is moved
to another server, its URL ceases to work.

Many middleware systems offer special facilities for storage, also referred to
as persistence. In its simplest form, persistence is offered through a distributed
file system, but more advanced middleware have integrated databases into their
systems, or otherwise provide facilities for applications to connect to databases.

In environments where data storage plays an important role, facilities are gen-
erally offered for distributed transactions. An important property of a transac-
tionisthat it allows multiple read and write operations to occur atomically. Atom-
icity means that the transaction either succeeds, so that all its write operations are
actually performed, or it fails, leaving all referenced data unaffected. Distributed
transactions operate on data that are possibly spread across multiple machines.

40 INTRODUCTION CHAP. 1

Especialy in the face of masking failures, which is often hard in distributed sys-
tems, it is important to offer services such as distributed transactions. Unfor-
tunately, transactions are hard to scale across many local machines, let alone geo-
graphically dispersed machines.

Finaly, virtually all middleware systems that are used in nonexperimental
environments provide facilities for security. Compared to network operating sys-
tems, the problem with security in middleware is that it should be pervasive. In
principle, the middleware layer cannot rely on the underlying local operating sys-
tems to adequately support security for the complete network. Consequently,
security has to be partly implemented anew in the middleware layer itself. Com-
bined with the need for extensibility, security has turned out to be one of the hard-
est services to implement in distributed systems.

Middlewar e and Openness

Modern distributed systems are generally constructed as middleware for a
range of operating systems. In this way, applications built for a specific distrib-
uted system become operating system independent. Unfortunately, this indepen-
dence is often replaced by a strong dependency on specific middleware. Problems
are caused by the fact that middleware is often less open than claimed.

As we explained previously, a truly open distributed system is specified by
means of interfaces that are complete. Complete means that everything that is
needed for implementing the system, has indeed been specified. Incompleteness
of interface definitions leads to the situation in which system developers may be
forced to add their own interfaces. Consequently, we may end up in a Situation in
which two middleware systems from different development teams adhere to the
same standard, but applications written for one system cannot be easily ported to
the other.

Equally bad is the situation in which incompleteness leads to a situation in
which two different implementations can never interoperate, despite the fact that
they implement exactly the same set of interfaces but different underlying proto-
cols. For example, if two different implementations rely on incompatible com-
munication protocols as available in the underlying network operating system,
there is little hope that interoperability can be easily achieved. What we need is
that middleware protocols and the interfaces to the middleware are the same, as
shownin Fig. 1-23.

As another example, to ensure interoperability between different implementa-
tions, it is necessary that entities within the different systems are referenced in the
same way. If entities in one system are referred by means of URLs, while the
other system implements references using network addresses, it is clear that cross
referencing is going to be a problem. In such cases, the interface definitions
should have prescribed precisely what references look like.

SEC. 14 SOFTWARE CONCEPTS 41
Application Same Application
programming
interface
A ta
H——— H H——— H

Middleware Middleware

Common
Network OS protoco| Network OS

Figure 1-23. In an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, as well as the interfaces they
offer to applications.

A Comparison between Systems

A brief comparison between distributed operating systems, network operating
systems, and (middleware-based) distributed systemsis given in Fig. 1-24.

Item Distributed OS Network OS | Middleware-

Multiproc. Multicomp. based DS

Degree of transparency Very high High Low High

Same OS on all nodes? Yes Yes No No

Number of copies of OS | 1 N N N

Basis for communication | Shared Messages Files Model
memory specific

Resource management Global, Global, Per node Per node
central distributed

Scalability No Moderately | Yes Varies

Openness Closed Closed Open Open

Figure 1-24. A comparison between multiprocessor operating systems, multi-
computer operating systems, network operating systems, and middleware-based
distributed systems.

With respect to transparency, it is clear that distributed operating systems do a
better job than network operating systems. In multiprocessor systems we have to
hide only that there are more processors, which is relatively easy. The hard part is
also hiding that memory is physicaly distributed, which is why building multi-
computer operating systems that support full distribution transparency is so diffi-
cult. Distributed systems often improve transparency by adopting a specific model
for distribution and communication. For example, distributed file systems are gen-
erally good at hiding the location and access to files. However, they lose some
generdity as users are forced to express everything in terms of that specific
model, which may be sometimes inconvenient for a specific application.

42 INTRODUCTION CHAP. 1

Distributed operating systems are homogeneous, implying that each node runs
the same operating system (kernel). In multiprocessor systems, no copies of tables
and such are needed, as they can al be shared through main memory. In this case,
al communication also happens through main memory, whereas in multicomputer
operating systems messages are used. In network operating systems, one could
argue that communication is amost entirely file based. For example, in the Inter-
net, a lot of communication is done by transferring files. However, high-level
messaging in the form of electronic mail systems and bulletin boards is also used
extensively. Communication in middleware-based distributed systems depends on
the model specifically adopted by the system.

Resources in network operating systems and distributed systems are managed
per node, which makes such systems relatively easy to scale. However, practice
shows that an implementation of the middleware layer in distributed systems often
has limited scalability. Distributed operating systems have global resource
management, making them harder to scale. Because of the centralized approach in
multiprocessor systems (i.e., all management data is kept in main memory), these
systems are often hard to scale.

Finally, network operating systems and distributed systems win when it
comes to openness. In general, nodes support a standard communication protocol
such as TCP/IP, making interoperability easy. However, there may be a lot of
problems porting applications when many different kinds of operating systems are
used. In general, distributed operating systems are not designed to be open.
Instead, they are often optimized for performance, leading to many proprietary
solutions that stand in the way of an open system.

