Robotica antropomorfa

Lesson 2

Giorgio Metta

RA 2008

All what we need in the next couple of hours

- Notation
- Simplifications
- Control of a single joint
- With certain hypotheses
- Some of the concepts from:
- Francesco Nori's classes
- Giorgio Torre's classes

Mechanical systems

- Things we'd like to model with the help of some trivial physics

RA 2007

How to describe things mathematically

- One reference frame per link
- Not needed for now...

base

RA 2007

Studying what?

	No forces	Forces
No motion	Styling	Static
Motion	Kinematics	Dynamics

Notation

$$
\begin{gathered}
F=\frac{d}{d t}(m v)=m \ddot{x} \quad \text { Since links are physical objects with mass } \\
\tau=J \ddot{\vartheta} \quad \mathrm{~J}=\text { moment of inertia } \\
\tau=F \times r
\end{gathered}
$$

Moment of inertia

RA 2007

Parallel axis theorem

$$
J=J_{c}+M r^{2}
$$

RA 2007

Example

$$
J_{y}=\rho \int r^{2} d V=\rho \int_{-1 / 2}^{1 / 2} x^{2} d x=\left.\rho \frac{1}{3} x^{3}\right|_{-1 / 2} ^{1 / 2}=\frac{M l^{2}}{12}
$$

$$
J_{y=-l / 2}=\frac{M I^{2}}{12}+M \frac{I^{2}}{4}=M \frac{I^{2}}{3}
$$

RA 2007

Experimental estimation of J

Use a photodiode and a computer to measure the frequency

Requires calibration from known J

$$
f=\frac{1}{2 \pi} \sqrt{\frac{K}{J}}
$$

Experimental estimation of J

RA 2007

Work and power

$$
\begin{array}{cc}
E=\text { const } & \text { if } \quad \sum F_{\text {ext }}=0 \\
W=\int_{s 1}^{s 2} F d s & W=\Delta E, E=\text { energ }, \\
K=\frac{1}{2} m v^{2} & \text { kinetic energy } \\
P=\frac{d W}{d t} & \text { Power } \rightarrow \quad P=F v
\end{array}
$$

Rotational case

$$
\begin{array}{cc}
E=\text { const } & \text { if } \quad \sum \tau_{\text {ext }}=0 \\
W=\int_{\vartheta_{1}}^{92} \tau d \vartheta & W=\Delta E, E=\text { energy } \\
K=\frac{1}{2} J \omega^{2} & \text { kinetic energy } \\
P=\frac{d W}{d t} & \text { Power } \rightarrow \quad P=\tau \omega
\end{array}
$$

As I mentioned, we'd like to model a single joint

RA 2007

Motor

- Let's imagine for now that it is something that generates a given torque

Mechanical transmission

- Gears
- Belts
- Lead screws
- Cables
- Cams
- etc.

Gears

N2

- Distance traveled is the same:

$$
r_{1} \vartheta_{1}=r_{2} \vartheta_{2}
$$

- Because the size of teeth is the same:

$$
\frac{N_{1}}{r_{1}}=\frac{N_{2}}{r_{2}}
$$

RA 2007

Furthermore...

$$
\begin{aligned}
& r_{1} \vartheta_{1}=r_{2} \vartheta_{2} \\
& \frac{N_{1}}{r_{1}}=\frac{N_{2}}{r_{2}}
\end{aligned}
$$

- No loss of energy $\tau_{1} \vartheta_{1}=\tau_{2} \vartheta_{2}$

Combining...

Equivalent J

$$
\begin{gathered}
\ddot{\vartheta}_{1} J_{1} \Leftarrow \tau_{1}=\tau_{2} \frac{N_{1}}{N_{2}}=\ddot{\vartheta}_{2} J_{2} \frac{N_{1}}{N_{2}} \\
J_{1}=\frac{\ddot{\vartheta}_{2}}{\ddot{\vartheta}_{1}} J_{2} \frac{N_{1}}{N_{2}} \Rightarrow\left(\frac{N_{1}}{N_{2}}\right)^{2} J_{2} \\
J_{1}=T R^{2} J_{2}
\end{gathered}
$$

- J as seen from the motor

In reality

$$
\tau_{2}=\tau_{1} \frac{1}{T R} \eta
$$

- Where η is the efficiency of the mechanism (from 0 to 1)
- η is related to power, speed ratio doesn't change
- η is also the ratio of input power vs. power at the output

For example

RA 2007

Example

Specifications									
reduction ratio	weight	length	length with motor			output continuous	torque intermittent	direction of rotation (reversible)	efficiency
(nominal)	without motor g		$\begin{gathered} 1319 \mathrm{~T} \\ \mathrm{~L} 1 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1331 \mathrm{~T} \\ \mathrm{~L} 1 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1336 \mathrm{U} \\ \mathrm{~L} 1 \\ \mathrm{~mm} \end{gathered}$	operation M max. mNm	operation $M_{\text {max }}$. mNm		
3,71:1	17	20,9	34,1	45,9	50,9	200	300	=	90
14 :1	20	25,0	38,2	50,0	55,0	300	450	=	80
43 :1	24	29,2	42,4	54,2	59,2	300	450	=	70
66 :1	24	29,2	42,4	54,2	59,2	300	450	=	70
134 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
159 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
246 :1	27	33,3	46,5	58,3	63,3	300	450	$=$	60
415 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
592 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
989 :1	30	37,4	50,6	62,4	67,4	300	450	$=$	55
1526 :1	30	37,4	50,6	62,4	67,4	300	450	=	55

RA 2007

Motion conversion

- Start with

$$
\tau_{2}=\frac{N_{2}}{N_{1}} \tau_{1}
$$

- Design $T R$, more torque (usually)

$$
\begin{gathered}
T R<1 \\
N_{2}>N_{1} \\
J_{1}<J_{2} \Leftrightarrow \omega_{2}<\omega_{1}
\end{gathered}
$$

RA 2007

Viscous friction

- Easy:

$$
\begin{aligned}
& \tau_{\text {viscous }}=B_{2} \dot{\vartheta}_{2} \\
& \tau_{\text {eq_viscous }}=T R \cdot \tau_{\text {viscous }}=T R \cdot B_{2} \dot{\vartheta}_{2} \\
& B_{e q} \dot{\vartheta}_{1}=T R \cdot B_{2} \dot{\vartheta}_{2} \Rightarrow B_{e q}=T R^{2} B_{2}
\end{aligned}
$$

- Coulomb friction:

$$
\tau_{e q}=T R \cdot F_{c} \operatorname{sgn}\left(\dot{\vartheta}_{2}\right)
$$

Lead screw

- Rotary to linear motion conversion ($\mathrm{P}=$ pitch in \#of turns/mm or inches)

$$
\begin{aligned}
& \vartheta[\mathrm{rad}]=2 \pi P x \\
& \dot{\vartheta}=2 \pi P \dot{x}
\end{aligned}
$$

$$
\begin{aligned}
E_{\text {rot }}=E_{\text {lin }} & \Rightarrow \frac{1}{2} M_{\text {load }} v^{2}=\frac{1}{2} J \omega^{2} \Rightarrow \\
& \Rightarrow J=\frac{M_{\text {load }}}{(2 \pi P)^{2}}
\end{aligned}
$$

Harmonic drives

From the harmonic drive website http://www.harmonicdrive.de

Gearhead (for real)

Example

- Designing the single joint
- Given:

$$
\ddot{\vartheta}_{\max } \Rightarrow \tau=J_{e q} \ddot{\vartheta} \Rightarrow \tau_{\max }=J_{e q} \ddot{\vartheta}_{\max }=J_{\text {load }} T R^{2} \ddot{\vartheta}_{\max }
$$

- Then taking into account some more realistic components:

$$
\tau_{\max }=J_{\text {load }} \frac{T R^{2}}{\eta} \ddot{\vartheta}_{\max }
$$

Example (continued)

$$
\tau_{\text {max }}=J_{\text {load }} \frac{T R^{2}}{\eta} \ddot{\vartheta}_{\max }
$$

$$
P=\tau_{\max } \dot{\theta} \Rightarrow \text { given } \dot{\vartheta}_{\max } \Rightarrow \text { get } P
$$

motor power, from catalog

This guarantees that the motor can still deliver maximum torque at maximum speed

More on real world components

- Efficiency
- Eccentricity
- Backlash
- Vibrations
- To get better results during design mechanical systems can be simulated

Control of a single joint

Components

- Digital microprocessor:
- Microcontroller, processor + special interfaces
- Amplifier (drives the motor)
- Turns control signals into power signals
- Actuator
- E.g. electric motor
- Mechanics/load
- The robot!
- Sensors
- For intelligence

Actuators

- Various types:
- AC, DC, stepper, etc.
- DC
- Brushless
- With brushes
- We'll have a look at the DC with brushes, simple to control, widely used in robotics

DC-brushless

Copyright © 1998
by Minimotor SA

Modeling the DC motor

- Speed-torque and torque-current relationships are linear

In particular

RA 2007

Real numbers!

http://www.minimotor.ch

RA 2007

Electrical diagram

$$
E_{g}=\omega(t) K_{E}
$$

RA 2007

Meaning of components

$R_{a} \quad$ - Armature resistance (including brushes)
$V_{a m}$
R_{l}
E_{g}
g
L_{a}

- Armature voltage
- Losses due to magnetic field
- Back EMF produced by the rotation of the armature in the field
- Coil inductance

We can write...

$$
\begin{gathered}
V_{\text {arm }}=R_{a} I_{a}+L_{a} \dot{I}_{a}+\omega(t) K_{E} \\
\text { for } R_{l} \ll R_{a}
\end{gathered}
$$

which is the case at the frequency of interest, and we also have...

$$
\tau=K_{T} I_{a}
$$

On torque and current

RA 2007

Thus for many coils...

torque from each loop added

Torque is related to the total current

RA 2007

Back to motor modeling...

$$
\tau=\left(J_{M}+J_{L}\right) \dot{\omega}(t)+B \omega(t)+\tau_{f}+\tau_{g r}
$$

$\tau \quad$ - Torque generated
$J_{M} \quad$ - Inertia of the motor
$J_{L} \quad$ - Inertia of the load
$\tau_{f} \quad$ - Friction
$\tau_{g r} \cdot$ Gravity

Furthermore...

$$
\begin{gathered}
V_{a r m}=R_{a} I_{a}+L_{a} \dot{I}_{a}+\omega(t) K_{E} \\
\tau=K_{T} I_{a} \\
\tau=\left(J_{M}+J_{L}\right) \dot{\omega}(t)+B \omega(t)+\tau_{f}+\tau_{g r}
\end{gathered}
$$

Consequently

$$
\left[\begin{array}{c}
\dot{I}_{a} \\
\dot{\omega}
\end{array}\right]=\left[\begin{array}{cc}
R_{a} / L_{a} & K_{E} / L_{a} \\
K_{T} / J_{M}+J_{L} & B / J_{M}+J_{L}
\end{array}\right] \cdot\left[\begin{array}{c}
I_{a} \\
\omega
\end{array}\right]+\left[\begin{array}{c}
-V_{a r m} / L_{a} \\
\tau_{f}+\tau_{g r} / J_{M}+J_{L}
\end{array}\right]
$$

- A linear system of two equations (differential)
- Q: can you write a transfer function from these equations?
- Q: can you transform the equations into a block diagram?

By Laplace-transforming

$$
\begin{gathered}
V_{a r m}(s)=R_{a} I_{a}(s)+L_{a} I_{a}(s) s+\omega(s) K_{E} \Rightarrow I_{a}(s)=\frac{V_{a r m}(s)-\omega(s) K_{E}}{R_{a}+L_{a} s} \\
\tau=K_{T} I_{a} \\
K_{T} \frac{V_{a r m}(s)-\omega(s) K_{E}}{R_{a}+L_{a} s}=\left(J_{M}+J_{L}\right) \omega(s) s+B \omega(s)+\tau_{f}+\tau_{g r}
\end{gathered}
$$

and finally

$$
\frac{\omega(s)}{V_{a r m}(s)}=\frac{K_{T} / L_{a} J_{T}}{s^{2}+\left[\left(R_{a} J_{T}+L_{a} B\right) / L_{a} J_{T}\right] s+\left(K_{T} K_{E}+R_{a} B\right) / L_{a} J_{T}}
$$

- Considering gravity and friction as additional inputs

Block diagram

RA 2007

Analysis tools

- Control: determine V_{a} so to move the motor as desired
- Root locus
- Frequency response

First block diagram

$$
H_{\text {open } _ \text {loop }}=\frac{A}{1+s \tau_{a}} \frac{K_{m}}{1+s \tau_{m}} \frac{K_{p}}{s}
$$

RA 2007

Root locus

$$
H_{\text {open_loop }}=\frac{A}{1+s \tau_{a}} \frac{K_{m}}{1+s \tau_{m}} \frac{K_{p}}{s} \quad K=A K_{m} K_{p}
$$

RA 2007

Changing K

RA 2007

Let's add something second diagram

$$
H_{\text {open_loop }}=\frac{A K_{m}\left(K_{p}+s K_{g}\right)}{\left(1+s \tau_{a}\right)\left(1+s \tau_{m}\right) s}
$$

RA 2007

Analysis

$$
H_{\text {open_loop }}=\frac{A K_{m} K_{p}\left(1+s K_{g} / K_{p}\right)}{\left(1+s \tau_{a}\right)\left(1+s \tau_{m}\right) s}
$$

$$
\begin{gathered}
K=A K_{m} K_{p} \\
Z_{\text {feedback }}=\frac{K_{g}}{K_{p}}
\end{gathered}
$$

RA 2007

Root locus (case 1)

RA 2007

Root locus (case 2)

RA 2007

Overall...

RA 2007

