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Back to the global viewBack to the global view
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Now we take a slightly tangential routeNow we take a slightly tangential route

� Computational motor control

� Control in biological systems

� There’s something more than the control of 
the single joint

� Study how control is done in biology ↔ study 
how control has to be done in robotics
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Computational motor controlComputational motor control

� Motor control has to do with sensori-motor 
transformations

� Sensory info is clearly in different format of 
motor data
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Also, something we haven’t discussed Also, something we haven’t discussed 
yetyet

� The study of the motor system is also the 
study of dynamics

RA 2008

 instead of ( , )F ma x f x v= =

TheoryTheory

�Optimization principles

�Internal models

�Motor learning

� Techniques developed in control theory 
and/or robotics applied to the study of 
the motor system
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Optimization principlesOptimization principles

� Don’t describe the kinematics directly, 
rather the movement is described 
abstractly

� Global measure (cost):

◦ Total efficiency

◦ Smoothness

◦ Accuracy

◦ Duration
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Trajectory generationTrajectory generation

� This fits in “front” of the “single joint” 
controller we’ve seen so far

� Q: how do we generate a sequence of 
reference points for the controller?
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trajectory generator

joint controller
joint controller

joint controller
joint controller

On the trajectory generationOn the trajectory generation

� Note that the feedback controller by 
itself doesn’t necessarily generate suitable 
trajectories especially for a complex 
kinematic structure (e.g. arm)
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Most studied behavior: reachingMost studied behavior: reaching

� Despite variation of movement direction, 
starting point, etc. there are some kinematic 
invariants; most notably:

◦ Straight trajectory

◦ Bell shaped velocity profiles
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Further…Further…

� There are variation from straightness 
especially at the periphery of the 
workspace

� Why is it so surprising that trajectories 
are straight:

◦ Joints are rotational → easier to get curved 
trajectories
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In additionIn addition

� There might be differences (from the bell-
shaped profile) when feedback plays a role

◦ See a moving object and try to intercept it

� Intuition: when “open-loop” trajectories are 
stereotyped otherwise they get distorted by 
feedback
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AbstractionAbstraction
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zero acceleration

v

symmetrical

OptimizationOptimization

� Q: what criterion might generate a similar 
trajectory profile?
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In formulasIn formulas

� g represents what is costly for us
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( )    [0, ]x t t T∈
cost ( )x t c∀ → ∈ℜ

( ( ), )  istantaneous costg x t t

0

( ( ), )
T

J g x t t dt= ∫

Minimize Minimize JJ

� In general – 2 techniques:

◦ Dynamic programming

� Computing all possible state transitions and cumulating 
the cost, then searching trajectories that minimize the 
cost → need to discretize the state space (curse of 
dimensionality)

� Variation calculus: finding x(t) such that J is minimized →
analytical
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ExamplesExamples

� Minimum Jerk (proposed by Hogan):
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• By calculus of variation it was shown 

that:
3 4 5

0 0( ) ( )[10( ) 15( ) 6( ) ]f
t t tx t x x x T T T= + − − +

• x is straight: obvious from the equation

NoteNote
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ElaborationsElaborations

� Don’t want to specify the duration of the 
movement
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• This model predicts durations correctly

Further elaborationsFurther elaborations

� Minimize torque change → similar to jerk 
minimization but in dynamical conditions
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• This model is due to Kawato

ConsiderationsConsiderations

� This description doesn’t imply that the CNS is 
actually optimizing anything
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Other issuesOther issues

� Hp: use P5(t) as a movement primitive 
(computed on-line)

� Superimpose primitives (which primitives?)

� Incrementally update (xf,x0) in feedback so that 
the system responds to perturbations

� Neural net solution → in practice the neural 
net does the minimization

� VITE model: feedback + variable gain might 
obtain results similar to the optimization 
techniques
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Internal modelsInternal models

� A system that mimics the behavior of a 
natural process

� Does the brain rely on internal models? 
(see Miall & Wolper paper)

� Types of models:

◦ Forward models

◦ Inverse models
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Forward modelsForward models

�Given the current state and input predict 
the next state of the system

� In physiology need to also estimate the 
state (measured, sensed) from the raw 
sensory input (it might be a complex 
computational problem – e.g. 3D from 2D 
information, etc.)

RA 2008
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Prediction of the causal flowPrediction of the causal flow

� The forward model can be seen as a 
prediction (anticipation) of the causal flow

� Being “internal” it can be faster than 
reality

� Example: the prediction of the state of the 
motor system due to the outgoing motor 
commands
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ExampleExample
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Forward models againForward models again

� They’re always well defined

� They could be one to one or one to 
many

� Another example:

◦ Kinematics: computing the position in space 
of the end-effector as a function of the joint 
angles
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FormallyFormally
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ŷ
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Inverse modelInverse model

� More difficult: the underlying forward model 
can be a one to many, thus not invertible 
unless additional constraints are provided
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û u ε− <
û

Use of models: canceling sensory reUse of models: canceling sensory re--
afferencesafferences

� Important for distinguishing our own motion 
from the environmental motion
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In biologyIn biology

� Ego-motion cancellation in pursuing a 
target

� Efference copy: a copy of the command

� Corollary discharge: the prediction of a 
signal computed by the CNS
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State estimationState estimation

� How can we (the CNS in fact) integrate 
motor and sensory information in estimate 
the state of the arm (for example)?

� Observer:
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Internal feedback to overcome delaysInternal feedback to overcome delays

� Feedback:

◦ Robust, doesn’t require a precise model of the 
system to be controlled

◦ Issue: it suffers from delays

� Feedforward:

◦ Requires a precise model

◦ Doesn’t care of delays since the control is 
computed in advance
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Delays in the CNSDelays in the CNS

� We live delayed of 30-300ms!

� A fast arm movement can last around 
200ms

� Feedforward controllers are required!
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The Smith predictor modelThe Smith predictor model
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In practiceIn practice

� A forward model + delay estimates the 
feedback signal

� This signal is compared with the delayed 
feedback and provides a correction due 
to feedback to the state estimation (slow, 
with some delay, low gain)

� State estimation proceeds open-loop 
otherwise directly from the model (fast, 
little delay)

RA 2008



7

Moreover…Moreover…

� State estimation of course could be 
extended into prediction

� Humans can get to zero delay in tasks 
where the target follows a predictable 
trajectory

RA 2008

Kalman filterKalman filter
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In essenceIn essence

� Under certain conditions Kalman filter is 
optimal (linear system, quadratic cost, 
Gaussian noise)
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Learning the modelsLearning the models

� What does it mean to learn the models?

RA 2008

u
H

M

y

ˆ ( )wy f u=

2 21 1
ˆmin min ( )

2 2 w
w w

y y f x y w− = − ⇒

How do I get the samples?How do I get the samples?

� Direct-inverse modeling

� Feedback error learning

� Distal supervised learning

� Reinforcement learning

� …
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DirectDirect--inverseinverse

� Simply send “certain” inputs to the 
system and measure the output. Use the 
set of samples collected to find the min of 
the cost

◦ If there are many solutions to the problem 
(e.g. redundancy) the direct-inverse approach 
is not well behaved

◦ For linear or otherwise simple problems the 
approach can work
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ExampleExample

� Archery problem: goal of the controller is to 
determine the angle
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Feedback error learningFeedback error learning

� Use something simpler to bootstrap learning 
of something more complicate
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ExampleExample
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Distal supervised learningDistal supervised learning

RA 2008

u
H

Control

y

Fwd model

*y

training signal
*y

x

Reinforcement learningReinforcement learning

� Reduced feedback from the environment
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RL algorithm

RL (2)RL (2)

� r is a scalar, much harder problem than 
anything we’ve seen so far

� Interaction with the environment is 
explicit

� Link of RL to dynamic programming, in 
practice RL is an approximation of DP

� It can solve difficult problems and it can 
generate controllers that perform better 
than the teacher
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Why is it so hard?Why is it so hard?

� Need to reconstruct a gradient from a scalar information (at 
best), in many cases information is even poorer (imagine 
playing chess: you only get information at the end of the 
game)
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