Kinematics

» Kinematics:
© Given the joint angles, compute the hand position

x=NA(q)
* Inverse kinematics:

— Given the hand position, compute the joint angles
to attain that position

q=A"(x)
* As usual, inverse problems might be
troublesome!

Kinematics

e Inverting:
> Geometrically: closed form solution exists in
certain cases
° By minimization:

J =%Hx—/\(q]\2 =q =argminJ
q

* Kinematic redundancy: more joints than constraints
— E.g. arigid body (hand) in space is described by 6 numbers
(position + orientation). A robot (or human) arm might have 7
or more joints (degrees of freedom)

Representing kinematics

* Representing rotations and translations
between coordinate frames of reference

Av=[7%v X

A=["% | Ys | *Z]v="R,®v B - A
"xs = "Ry x5 = "Ry[1,0,0]"

Rotation matrix
"Ry("R)" =1 = ("R)" =("Ry) =R,
Orthogonal matrix

cosg -snd 0
Example: rotation along the Zaxis | SiN$ cosd O

0 0 1
ﬁ coss B;i= Zy
“Xg =| sing X
Xab Mg 0 Xy ));A

Rigid body transformations

| p(®) -a(®)] =[ p(0) - a(0)| = constant
¢ Given that the object is:
OOR?®

* The motion of the body is represented by a
family of mappings:

g(t):0 - R?
» A rigid displacement of the body is:
g:0 - R?

Action on points and vectors

g- (V) =9(@)-9(p)
Where:
v=q-p

Note the difference between points and vectors (although both are represented as
3-tuples of numbers). A vector has magnitude and direction and doesn't belong to
abody (free vector).




Then...
g:R® . R?
is a rigid body transformation if:

lo(p)-g(a)||=||p-q for all points p,qOR®
Length is preserved
g. (VX W) = g.(v) x g. (w) for all vectorsv,wOR?

The cross product is preserved

The inner product is also preserved, thus:

Ty — T
VW= g* (V) g* (W) l.e. orthogonal vectors remain orthogonal

Some more requirements

« Right handed coordinate systems:

Z Z:XXy
I~

X

+ If a coordinate system is attached to a
rigid body undergoing rigid motion:
V,,V,,V, atached in p then by effect of g
9. (4). 8. (v,). 9. (v;) areattached in g(p)

Rotation matrix

Ry =X | Yoo | 2]

Xab Coordinates of the B’s principal axis x relative to A
Ais the inertial frame, B is the body frame

33 3
Ry UR™, X0 Yo Zp R
Then:
X, Yao = 0 and so forth...
RR' =R'R=|
det R=1for right-handed coordinate systems

Rotation matrix (planar case)

cosd -sind 0
Example: rotation along the Z axis | SiN 3 cosd 0

0 0 1
ﬁ cos? z,=1,
Xy =| Sing Xw%
Xt M, 0 X, Yai/a

The group of rotations SO(3)

» The set of 3x3 matrices with these properties
is denoted:

S0O(3) which means Specia Orthogonal of size 3

* That is:
0B ={ROR**:RR" =1,detR=+1}
/ N

Orthogonal Special

SO(3) is a group under matrix
multiplication
I. Closure
R, R, 0S0(3) = RR, 1SO(3)
2. ldentity
| istheidentity element IR=R OR

3. Inverse
RR' =R'R=1,R'0S0(3)
4. Associativity

(RR)R =R(RR)




More simple rotations

cos? 0 sind

Example: rotation along the Y axis 0 1 0

-sind 0 cosd

1 0 0
0 cos? -sing Example: rotation along the X axis
0 sind cosd

Representing 3D rotations

 Sequences of elementary rotations
° Euler angles:z,y,z or z,x,z
> Roll, pitch, yaw angles: z, y, x
> Vector (axis of rotation) and angle

Roto-translation
» Rotation combined with translation

— A B A
v="R, v+ "0,

Zy

;"0
XM Ya
¥s

Homogeneous representation
» To make things uniform

— A B A
Av="R, ®v+ "0,

MR

=T, % dim(v)=4

Clearly
A= T TS C - A

M =ET

* Composition of transforms
* Inverse of a rototranslation

Direct kinematics

<e>

T (q)- "T,(a,)
(%, ¥,2) = °T,(0}, 9, G, 0,) [{0,0,0)"

X=A@)
orientation = A(q)




Conventions

« For placing the reference frames on each link
¢ Denavit-Hartenberg

* Many times DH parameters are given for a

manipulator (and various useful equations are also
given wrt DH convention)

Inverse kinematics

¢ Direct approach
* Geometric
* Minimization

* Neural network, learning

Inverse kinematics
¢ Direct approach
° Try solving:
x=NL, (6,0, G, o)
y=NL, (¢, %, 05, Gs)
z=NL,(%,0,,0,0,)

for @,,0,,9%,0,

Geometric approach

¢ For certain manipulator the solution exists in
close form

> Decomposable structures (e.g. translation and
rotations can be handled separately)
¢ Rotations follow certain rules
* Many industrial manipulators were designed
with inverse kinematics in mind

Minimization
* Find the solution to:
J =%Hx—/\(q]\2 =q =argminJ
q
* Neural network/learning:

(q,X) - /\71

+ Approximate the inverse out of a family

of functions (NN approach) starting from
examples

What about velocity?

¢ Jacobian matrix

o dx

da, dq,
x:/\(q):%: oo B?f

ax, O

da, dq,,

dx B‘ﬂ
- = J
dt @ dt




Note on representing velocities

o If x is:

X=(XY,2,3,0,¢)
* Position + Euler angles

V= (Vx’vylvz!791¢ll//)
» Euler angles derivatives do not have any
clear physical meaning
v=(v,,V,,v,,0)
* Angular velocity (rate of rotation along
the axis

Anyway...

e Just make sure the representation and the

equations are consistent

V=V, v, 9.8.4) = 3,

V=(V,V,,V,,0) =],

Jacobian
¢ Formula
© Given the DH representation of transformations

¢ Considering only rotational joints

J,=[J;13,---3,] fornjoints

o[ ]

°z

*Pei =P —°P

Pr I

Having written

When | is invertible

» Can compute the joint velocities to obtain a
certain hand velocity
q=J7"%
* If n>6, redundancy:
g=J"x+(1-3"2)k

* k is a constant vector

Troubles

e Even if n<6 there are many situations
where | cannot be inverted (singularities)
> Movement singularities (chain of rotations)

° | not invertible because certain elements go
to zero




Resolved rate controller

Joint
controllers

0l

Sensors

Static

« Relationship between forces and torques
dx = Jdg
dg't=dx'F
dq't=dq"J'F
U
t=JF

* Imagining the integrals where

appropriate

Another idea

t=J'F

» Use this equation to design a force controller:
> Given F compute the torques to drive the joints

Dynamics

» Two methods to derive the equation of
motion (differential equations)
> Newton-Euler
° Lagrange formalism

Newton-Euler

« Start from: F =£(mv)
dt
T 2%00))
F=<m)

Write down every equation (6):

d . I:>find the angular velocity and
‘r=a(lm)=mx(lm)+lm : y

| with respect to a base frame

kinematics

Lagrange formulation

e Lagrange equations:

L=K-P
= e ’t
ZF%:E[QJ_i X/_l X/_l(ql qN )
. "oq dilog) oq
/ 1 1
External forces K==mviv+=o'le
(no potential) 2 2




For a manipulator

* Take the joint angles as variable, write the
position x of the links, write down K, P and
the external forces

=M (q)d +h(q,9)q +g(a)
/ / \ \Gravity

External forces

(control) Inertia (generalized) Coriolis, centrifugal effects

Complexity
* Newton-Euler: o(n)
e Lagrange: o(n*)

* Kinematics — just measure the params
* Dynamics — estimate from data

Dynamics

¢ Direct dynamics:

7(t) - q(t)
» Simulation (integrate the equations —
Runge-Kutta, Euler, etc.)

* Inverse dynamics:
qa(t) - 7(t)

Dynamics and control

e Case |: parameters are such that feedback
gain at each joint is >> gravity, Coriolis,
centrifugal, disturbances, etc.

e Case 2:feedback in not enough for high-speed,
precision, etc. - compensation is required

Case |

» Approx behavior:

Ag+Bg+klq-q']1=0

* Can design k or a PID controller to make
this system behave as desired

Case 2

e Let’s imagine we know all the parameters with
a certain precision:
T=M(@)d+h(g,9)q+9(a)
Tema = M (@)U +h(9,4)4 +9(q)
M (@)d +h(a,4)d +9(q) =M (a)u +h(g,4)q +9(a)
M(@)d=M(qu

u=d +k(q -a)+k,(q -q)




Case 2 (continued)
d=u
u=g +k(@ -a)+k,(@ -a)

=6 +k,(q —a)+k,(@ -q)

e=q -q
0=g+ke+ke

* Appropriate design of the gains can get arbitrary
exponential behavior of the error




