Kinematics

- Kinematics:

Given the joint angles, compute the hand position

$$
\mathbf{x}=\Lambda(\mathbf{q})
$$

- Inverse kinematics:
- Given the hand position, compute the joint angles to attain that position

$$
\mathbf{q}=\Lambda^{-1}(\mathbf{x})
$$

- As usual, inverse problems might be troublesome!

Kinematics

- Inverting:

Geometrically: closed form solution exists in certain cases
By minimization:

$$
J=\frac{1}{2}\|\mathbf{x}-\Lambda(\mathbf{q})\|^{2} \Rightarrow \mathbf{q}^{*}=\underset{\mathbf{q}}{\arg \min } J
$$

- Kinematic redundancy: more joints than constraints
- E.g. a rigid body (hand) in space is described by 6 numbers (position + orientation). A robot (or human) arm might have 7 or more joints (degrees of freedom)

Representing kinematics

- Representing rotations and translations between coordinate frames of reference

$$
{ }^{A} v=[?]^{B} v
$$

$$
{ }^{A} v=\left[{ }^{A} x_{B}\left|{ }^{A} y_{B}\right|{ }^{A} z_{B}\right]^{B} v={ }^{A} R_{B}{ }^{B} v \quad B \rightarrow A
$$

${ }^{A} x_{B}={ }^{A} R_{B}{ }^{B} x_{B}={ }^{A} R_{B}[1,0,0]^{T}$

Rigid body transformations

$$
\|p(t)-q(t)\|=\|p(0)-q(0)\|=\mathrm{constant}
$$

- Given that the object is:

$$
O \subset \mathbb{R}^{3}
$$

- The motion of the body is represented by a family of mappings:

$$
g(t): O \rightarrow \mathbb{R}^{3}
$$

- A rigid displacement of the body is:

$$
g: O \rightarrow \mathbb{R}^{3}
$$

Rotation matrix

${ }^{A} R_{B}\left({ }^{A} R_{B}\right)^{T}=I \Leftrightarrow\left({ }^{A} R_{B}\right)^{T}=\left({ }^{A} R_{B}\right)^{-1}={ }^{B} R_{A}$ Orthogonal matrix

Example: rotation along the Z axis $\left[\begin{array}{ccc}\cos \vartheta & -\sin \vartheta & 0 \\ \sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1\end{array}\right]$

Action on points and vectors

$$
g_{*}(v)=g(q)-g(p)
$$

Where:

$$
v=q-p
$$

Note the difference between points and vectors (although both are represented as 3 -tuples of numbers). A vector has magnitude and direction and doesn't belong to a body (free vector).

Then...

$$
g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

is a rigid body transformation if:
$\|g(p)-g(q)\|=\|p-q\|$ for all points $p, q \in \mathbb{R}^{3}$
Length is preserved
$g_{*}(v \times w)=g_{*}(v) \times g_{*}(w)$ for all vectors $v, w \in \mathbb{R}^{3}$
The cross product is preserved \downarrow

The inner product is also preserved, thus:
$v^{T} w=g_{*}(v)^{T} g_{*}(w)$
le. orthogonal vectors remain orthogonal

Some more requirements

- Right handed coordinate systems:

- If a coordinate system is attached to a rigid body undergoing rigid motion: v_{1}, v_{2}, v_{3} attached in p then by effect of g $g_{*}\left(v_{1}\right), g_{*}\left(v_{2}\right), g_{*}\left(v_{3}\right)$ are attached in $\mathrm{g}(p)$

Rotation matrix

$$
R_{a b}=\left[x_{a b}\left|y_{a b}\right| z_{a b}\right] \quad \stackrel{z_{a}}{x_{a b+} \underbrace{z_{a b}}_{x_{a}} y_{a}}
$$

$x_{a b} \quad$ Coordinates of the B 's principal axis x relative to A A is the inertial frame, B is the body frame
$R_{a b} \in \mathbb{R}^{3 \times 3}, x_{a b}, y_{a b}, z_{a b} \in \mathbb{R}^{3}$
Then:
$x_{a b} y_{a b}=0$ and so forth..
$R R^{T}=R^{T} R=I$
det $R=1$ for right-handed coordinate systems

Rotation matrix (planar case)

Example: rotation along the Z axis $\left[\begin{array}{ccc}\cos \vartheta & -\sin \vartheta & 0 \\ \sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1\end{array}\right]$

The group of rotations $\mathrm{SO}(3)$

- The set of 3×3 matrices with these properties is denoted:
$S O(3)$ which means Special Orthogonal of size 3
- That is:

$$
S O(3)=\{R \in \mathbb{R}^{3 \times 3}: \overbrace{\text { Orthogonal }}^{R R^{T}}=I, \operatorname{det} R=+1\}
$$

$\mathrm{SO}(3)$ is a group under matrix multiplication
I. Closure

$$
R_{1}, R_{2} \in S O(3) \Rightarrow R_{1} R_{2} \in S O(3)
$$

2. Identity
I is the identity element $I R=R \forall R$
3. Inverse

$$
R R^{T}=R^{T} R=I, R^{T} \in S O(3)
$$

4. Associativity

$$
\left(R_{1} R_{2}\right) R_{3}=R_{1}\left(R_{2} R_{3}\right)
$$

More simple rotations

Example: rotation along the Y axis $\left[\begin{array}{ccc}\cos \vartheta & 0 & \sin \vartheta \\ 0 & 1 & 0 \\ -\sin \vartheta & 0 & \cos \vartheta\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \vartheta & -\sin \vartheta \\ 0 & \sin \vartheta & \cos \vartheta\end{array}\right]$
Example: rotation along the X axis

Roto-translation

- Rotation combined with translation

$$
{ }^{A} v={ }^{A} R_{B}{ }^{B} v+{ }^{A} o_{B}
$$

Representing 3D rotations

- Sequences of elementary rotations
- Euler angles: z, y, z or z, x, z
- Roll, pitch, yaw angles: $\mathbf{z , y}, \mathbf{x}$
- Vector (axis of rotation) and angle

Homogeneous representation

- To make things uniform

$$
\begin{gathered}
{ }^{A} v={ }^{A} R_{B}{ }^{B} v+{ }^{A} o_{B} \\
{\left[\begin{array}{c}
{ }^{A} v \\
1
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & { }^{A} o_{B} \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
{ }^{B} v \\
1
\end{array}\right]} \\
{ }^{A} v={ }^{A} T_{B}{ }^{B} v \quad \operatorname{dim}(v)=4
\end{gathered}
$$

Direct kinematics

$$
(x, y, z)={ }^{0} T_{e}\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \cdot(0,0,0)^{T}
$$

$$
\mathbf{x}=\Lambda(\mathbf{q})
$$

orientation $=\tilde{\Lambda}(\mathbf{q})$

Conventions

- For placing the reference frames on each link

Denavit-Hartenberg

- Many times DH parameters are given for a manipulator (and various useful equations are also given wrt DH convention)

Inverse kinematics

- Direct approach
- Geometric
- Minimization
- Neural network, learning

Inverse kinematics

- Direct approach

Try solving:

$$
\begin{aligned}
& x=N L_{x}\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \\
& y=N L_{y}\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \\
& z=N L_{z}\left(q_{1}, q_{2}, q_{3}, q_{4}\right)
\end{aligned}
$$

for $q_{1}, q_{2}, q_{3}, q_{4}$

Minimization

- Find the solution to:

$$
J=\frac{1}{2}\|\mathbf{x}-\Lambda(\mathbf{q})\|^{2} \Rightarrow \mathbf{q}^{*}=\underset{\mathbf{q}}{\arg \min } J
$$

- Neural network/learning:

$$
(\mathbf{q}, \mathbf{x}) \rightarrow \Lambda^{-1}
$$

- Approximate the inverse out of a family of functions (NN approach) starting from examples

Geometric approach

- For certain manipulator the solution exists in close form
Decomposable structures (e.g. translation and rotations can be handled separately)
Rotations follow certain rules
- Many industrial manipulators were designed with inverse kinematics in mind

What about velocity?

- Jacobian matrix

$$
\begin{aligned}
\mathbf{x}=\Lambda(\mathbf{q}) \Rightarrow \frac{d \mathbf{x}}{d t} & =\left[\begin{array}{ccc}
\frac{d x_{1}}{d q_{1}} & \cdots & \frac{d x_{1}}{d q_{m}} \\
\vdots & \ddots & \vdots \\
\frac{d x_{n}}{d q_{1}} & \cdots & \frac{d x_{n}}{d q_{m}}
\end{array}\right] \cdot \frac{d \mathbf{q}}{d t} \\
\frac{d \mathbf{x}}{d t} & =J(\mathbf{q}) \cdot \frac{d \mathbf{q}}{d t}
\end{aligned}
$$

Note on representing velocities

- If x is:

$$
\mathbf{x}=(x, y, z, \vartheta, \varphi, \psi)
$$

- Position + Euler angles

$$
\mathbf{v}=\left(v_{x}, v_{y}, v_{z}, \dot{\vartheta}, \dot{\varphi}, \dot{\psi}\right)
$$

- Euler angles derivatives do not have any clear physical meaning

$$
\mathbf{v}=\left(v_{x}, v_{y}, v_{z}, \boldsymbol{\omega}\right)
$$

- Angular velocity (rate of rotation along the axis

Anyway...

- Just make sure the representation and the equations are consistent

$$
\begin{gathered}
\mathbf{v}=\left(v_{x}, v_{y}, v_{z}, \dot{\vartheta}, \dot{\varphi}, \dot{\psi}\right) \Rightarrow J_{r} \\
\mathbf{v}=\left(v_{x}, v_{y}, v_{z}, \boldsymbol{\omega}\right) \Rightarrow J_{v}
\end{gathered}
$$

Jacobian
 Formula

Given the DH representation of transformations
Considering only rotational joints
$J_{v}=\left[J_{1} \mid J_{2} \cdots J_{n}\right]$ for n joints
$J_{i}=\left[\begin{array}{c}{ }^{o} z_{i} \times{ }^{o} p_{E, i} \\ { }^{o} z_{i}\end{array}\right]$
$p_{E, i}={ }^{o} p_{E}-{ }^{o} p_{i}$

When J is invertible

- Can compute the joint velocities to obtain a certain hand velocity

$$
\dot{\mathbf{q}}=J^{-1} \dot{\mathbf{x}}
$$

Troubles

- Even if $n \leq 6$ there are many situations where J cannot be inverted (singularities)
- Movement singularities (chain of rotations)
- J not invertible because certain elements go to zero
- If $\mathrm{n}>6$, redundancy:

Having written

$$
\begin{gathered}
{ }^{0} T_{i}=\left[\begin{array}{cccc}
{ }^{x_{i}} & { }^{0} y_{i} & { }^{0} z_{i} & { }^{0} p_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{0} T_{i}={ }^{0} T_{1}{ }^{1} T_{2} \cdots{ }^{i-1} T_{i}
\end{gathered}
$$

$$
\dot{\mathbf{q}}=J^{+} \dot{\mathbf{x}}+\left(I-J^{+} J\right) \mathbf{k}
$$

- \mathbf{k} is a constant vector

Resolved rate controller

Static

- Relationship between forces and torques

$$
\begin{aligned}
& d \mathbf{x}=J d \mathbf{q} \\
& d \mathbf{q}^{T} \boldsymbol{\tau}=d \mathbf{x}^{T} \mathbf{F} \\
& d \mathbf{q}^{T} \boldsymbol{\tau}=d \mathbf{q}^{T} J^{T} \mathbf{F} \\
& \Downarrow \\
& \boldsymbol{\tau}=J^{T} \mathbf{F}
\end{aligned}
$$

- Imagining the integrals where appropriate

Another idea

$$
\boldsymbol{\tau}=J^{T} \mathbf{F}
$$

- Use this equation to design a force controller:

Given F compute the torques to drive the joints

Dynamics

- Two methods to derive the equation of motion (differential equations)
Newton-Euler
Lagrange formalism

Lagrange formulation

- Lagrange equations:

$$
\begin{aligned}
& \left\{\begin{array}{c}
L=K-P \\
\sum_{\mu} F_{\mu} \frac{\partial x_{\mu}}{\partial q_{i}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}
\end{array} \quad x_{\mu}=x_{\mu}\left(q_{1} \cdots q_{N}, t\right)\right. \\
& \substack{\text { External forces } \\
\text { (no potential) }} \\
& K=\frac{1}{2} m \mathbf{v}^{T} \mathbf{v}+\frac{1}{2} \boldsymbol{\omega}^{T} I \boldsymbol{\omega}
\end{aligned}
$$

For a manipulator

- Take the joint angles as variable, write the position x of the links, write down K, P and the external forces

Complexity

- Newton-Euler:	$o(n)$
- Lagrange:	$o\left(n^{4}\right)$

- Lagrange:

Estimation

- Kinematics \rightarrow just measure the params
- Dynamics \rightarrow estimate from data

Dynamics

- Direct dynamics:

$$
\tau(t) \rightarrow q(t)
$$

- Simulation (integrate the equations -Runge-Kutta, Euler, etc.)
- Inverse dynamics:

$$
q(t) \rightarrow \tau(t)
$$

Dynamics and control

- Case I: parameters are such that feedback gain at each joint is >> gravity, Coriolis, centrifugal, disturbances, etc.
- Case 2: feedback in not enough for high-speed, precision, etc. \rightarrow compensation is required

Case I

- Approx behavior:

$$
A \ddot{\mathbf{q}}+B \dot{\mathbf{q}}+k\left[\mathbf{q}-\mathbf{q}^{*}\right]=0
$$

- Can design k or a PID controller to make this system behave as desired

Case 2

- Let's imagine we know all the parameters with a certain precision:

$$
\begin{gathered}
\boldsymbol{\tau}=M(\mathbf{q}) \ddot{\mathbf{q}}+h(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+g(\mathbf{q}) \\
\boldsymbol{\tau}_{\text {control }}=M(\mathbf{q}) \mathbf{u}+h(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+g(\mathbf{q})
\end{gathered}
$$

$$
M(\mathbf{q}) \ddot{\mathbf{q}}+h(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+g(\mathbf{q})=M(\mathbf{q}) \mathbf{u}+h(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+g(\mathbf{q})
$$

$$
M(\mathbf{q}) \ddot{\mathbf{q}}=M(\mathbf{q}) \mathbf{u}
$$

$$
\mathbf{u}=\ddot{\mathbf{q}}^{*}+k_{d}\left(\dot{\mathbf{q}}^{*}-\dot{\mathbf{q}}\right)+k_{p}\left(\mathbf{q}^{*}-\mathbf{q}\right)
$$

