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KinematicsKinematics

� Kinematics:

◦ Given the joint angles, compute the hand position

RA 2008

( )= Λx q
• Inverse kinematics:

– Given the hand position, compute the joint angles 

to attain that position
1( )−= Λq x

• As usual, inverse problems might be 

troublesome!

KinematicsKinematics

� Inverting:

◦ Geometrically: closed form solution exists in 
certain cases

◦ By minimization:

RA 2005

• Kinematic redundancy: more joints than constraints

– E.g. a rigid body (hand) in space is described by 6 numbers 

(position + orientation). A robot (or human) arm might have 7 

or more joints (degrees of freedom)

( ) JJ
q

qqx minarg
2

1 *2 =⇒Λ−=

Representing kinematicsRepresenting kinematics

� Representing rotations and translations 
between coordinate frames of reference

RA 2005

[?]A Bv v=
Ax Ay

Az

Bx
By

Bz

[ | | ]     A A A A B A B
B B B Bv x y z v R v B A= = →

[1,0,0]A A B A T
B B B Bx R x R= =

Rotation matrixRotation matrix

RA 2008

1( ) ( ) ( )A A T A T A B
B B B B AR R I R R R−= ⇔ = =

Orthogonal matrix

cos sin 0

sin cos 0

0 0 1

ϑ ϑ
ϑ ϑ

− 
 
 
  

Example: rotation along the Z axis

Ax Ay

A Bz z=

Bx
ByAx

Bx

cos

sin

0

A
Bx

ϑ
ϑ

 
 =  
  

Rigid body transformationsRigid body transformations

3O ⊂ ℝ

RA 2008

� Given that the object is:

( ) ( ) (0) (0) constantp t q t p q− = − =

• The motion of the body is represented by a 

family of mappings:
3( ) :g t O → ℝ

• A rigid displacement of the body is:
3:g O →ℝ

RA 2008

Action on points and vectorsAction on points and vectors

Where:

*( ) ( ) ( )g v g q g p= −

v q p= −

Note the difference between points and vectors (although both are represented as
3-tuples of numbers). A vector has magnitude and direction and doesn’t belong to
a body (free vector).



2

RA 2008

Then…Then…

is a rigid body transformation if:

3 3:g →ℝ ℝ

3( ) ( )  for all points ,g p g q p q p q− = − ∈ℝ
Length is preserved

3
* * *( ) ( ) ( ) for all vectors ,g v w g v g w v w× = × ∈ℝ

The cross product is preserved

The inner product is also preserved, thus:

* *( ) ( )T Tv w g v g w= I.e. orthogonal vectors remain orthogonal
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Some more requirementsSome more requirements

� Right handed coordinate systems:

z x y= ×

x
y

z

• If a coordinate system is attached to a 

rigid body undergoing rigid motion:

1 2 3, ,  attached in  then by effect of v v v p g

* 1 * 2 * 3( ), ( ), ( ) are attached in g( )g v g v g v p
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Rotation matrixRotation matrix

ax ay

az

abx

aby

abz[ | | ]ab ab ab abR x y z=

abx Coordinates of the B’s principal axis x relative to A
A is the inertial frame, B is the body frame

3 3 3, , ,ab ab ab abR x y z×∈ ∈ℝ ℝ

Then:

0 and so forth...

det 1 for right-handed coordinate systems

ab ab

T T

x y

RR R R I

R

=

= =
=
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Rotation matrix (planar case)Rotation matrix (planar case)

cos sin 0

sin cos 0

0 0 1

ϑ ϑ
ϑ ϑ

− 
 
 
  

Example: rotation along the Z axis

ax ay

a abz z=

abx

abyax
abx

cos

sin

0
abx

ϑ
ϑ

 
 =  
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The group of rotations SO(3)The group of rotations SO(3)

� The set of 3x3 matrices with these properties 
is denoted:

(3) which means Special Orthogonal of size 3SO

3 3(3) { : ,det 1}TSO R RR I R×= ∈ = = +ℝ

• That is:

Orthogonal Special

RA 2008

SO(3)SO(3) is a group under matrix is a group under matrix 
multiplicationmultiplication

1. Closure

2. Identity

3. Inverse

4. Associativity

1 2 1 2, (3) (3)R R SO R R SO∈ ⇒ ∈

 is the identity element  I IR R R= ∀

, (3)T T TRR R R I R SO= = ∈

1 2 3 1 2 3( ) ( )R R R R R R=
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More simple rotationsMore simple rotations

RA 2008

cos 0 sin

0 1 0

sin 0 cos

ϑ ϑ

ϑ ϑ

 
 
 
 − 

Example: rotation along the Y axis

1 0 0

0 cos sin

0 sin cos

ϑ ϑ
ϑ ϑ

 
 − 
  

Example: rotation along the X axis

Representing 3D rotationsRepresenting 3D rotations

� Sequences of elementary rotations

◦ Euler angles: z, y, z or z, x, z

◦ Roll, pitch, yaw angles: z, y, x

◦ Vector (axis of rotation) and angle

RA 2008

RotoRoto--translationtranslation

� Rotation combined with translation

RA 2008

A A B A
B Bv R v o= +

Ax Ay

Az

Bx

By

Bz A
Bo

Homogeneous representationHomogeneous representation

� To make things uniform

RA 2008

A A B A
B Bv R v o= +

1 0 1 1

A A A B
B Bv R o v     

= ⋅     
     

    dim( ) 4A A B
Bv T v v= =

ClearlyClearly

� Composition of transforms

� Inverse of a rototranslation

RA 2008

    A A B C
B Cv T T v C A= →

1

1

0 1 0 1

A A A T A T A
B B B B B

A B
B A

R o R R o

T T

−

−

   −
=   

   

=

Direct kinematicsDirect kinematics

RA 2008

0< >
1< >

2< >

3< >
e< >

0 1
1 1( ) ( )n

n nT q T q−
⋯

0
1 2 3 4( , , ) ( , , , ) (0,0,0)T

ex y z T q q q q= ⋅
( )= Λx q

( )= Λorientation qɶ
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ConventionsConventions

� For placing the reference frames on each link

◦ Denavit-Hartenberg

� Many times DH parameters are given for a 
manipulator (and various useful equations are also 
given wrt DH convention)

RA 2008

Inverse kinematicsInverse kinematics

� Direct approach

� Geometric

� Minimization

� Neural network, learning

RA 2008

Inverse kinematicsInverse kinematics

� Direct approach

◦ Try solving:

RA 2008

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

( , , , )

( , , , )

( , , , )

for  , , ,

x

y

z

x NL q q q q

y NL q q q q

z NL q q q q

q q q q

=
=

=

Geometric approachGeometric approach

� For certain manipulator the solution exists in 
close form
◦ Decomposable structures (e.g. translation and 
rotations can be handled separately)

◦ Rotations follow certain rules

� Many industrial manipulators were designed 
with inverse kinematics in mind

RA 2008

MinimizationMinimization

RA 2008

• Find the solution to:

• Neural network/learning:

1( , ) −→ Λq x

• Approximate the inverse out of a family 

of functions (NN approach) starting from 

examples

( ) JJ
q

qqx minarg
2

1 *2 =⇒Λ−=

What about velocity?What about velocity?

� Jacobian matrix

RA 2008

1 1

1

1

( )
m

n n

m

dx dx

dq dq
d d

dt dt
dx dx

dq dq

 
 
 

= Λ ⇒ = ⋅ 
 
 
  

x q
x q

⋯

⋮ ⋱ ⋮

⋯

( )
d d

J
dt dt

= ⋅x q
q
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Note on representing velocitiesNote on representing velocities

� If x is:

RA 2008

( , , , , , )x y z ϑ ϕ ψ=x

• Position + Euler angles

( , , , , , )x y zv v v ϑ ϕ ψ=v ɺ ɺ ɺ

• Euler angles derivatives do not have any 

clear physical meaning

( , , , )x y zv v v=v ω

• Angular velocity (rate of rotation along 

the axis

Anyway…Anyway…

� Just make sure the representation and the 
equations are consistent

RA 2008

( , , , , , )x y z rv v v Jϑ ϕ ψ= ⇒v ɺ ɺ ɺ

( , , , )x y z vv v v J= ⇒v ω

JacobianJacobian
� Formula

◦ Given the DH representation of transformations

◦ Considering only rotational joints

RA 2008

1 2[ | ]    for  jointsv nJ J J J n= ⋯

,
o o

i E i
i o

i

z p
J

z

 ×
=  
 

0< >
1< >

2< >

3< > e< >

,
o o o

E i E ip p p= −

o
ip

o
Ep

Having writtenHaving written

RA 2008

0 0 0 0
0

0 0 0 1
i i i i

i

x y z p
T

 
=  
 

0 0 1 1
1 2

i
i iT T T T−= ⋯

When J is invertibleWhen J is invertible

� Can compute the joint velocities to obtain a 
certain hand velocity

RA 2008

1J −=q xɺ ɺ

• If n>6, redundancy:

( )J I J J+ += + −q x kɺ ɺ

• k is a constant vector

TroublesTroubles

� Even if n≤6 there are many situations 
where J cannot be inverted (singularities)

◦ Movement singularities (chain of rotations)

◦ J not invertible because certain elements go 
to zero

RA 2008
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Resolved rate controllerResolved rate controller
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1J − 1

s
Joint

controllers

Sensors

-

*s

s

qɺ q

StaticStatic
� Relationship between forces and torques

RA 2008

T T

T T T

T

d Jd

d d

d d J

J

=
=

=
⇓

=

x q

q τ x F

q τ q F

τ F

• Imagining the integrals where 

appropriate

Another ideaAnother idea

� Use this equation to design a force controller:

◦ Given F compute the torques to drive the joints

RA 2008

TJ=τ F

DynamicsDynamics

� Two methods to derive the equation of 
motion (differential equations)

◦ Newton-Euler

◦ Lagrange formalism

RA 2008

NewtonNewton--EulerEuler

� Start from:

RA 2008

( )

( )

d
m

dt
d

I
dt

 =

 =


F v

τ ω

( )

( ) ( )

kinematics

d
m

dt
d

I I I
dt

 =

 = = × +



F v

τ ω ω ω ωɺ

Write down every equation (6):
find the angular velocity and
I with respect to a base frame

Lagrange formulationLagrange formulation

� Lagrange equations:

RA 2008

i i i

L K P

x d L L
F

q dt q q
µ

µ
µ

= −
 ∂  ∂ ∂ = −  ∂ ∂ ∂ 
∑

ɺ

1( , )Nx x q q tµ µ= ⋯

External forces
(no potential)

1 1

2 2
T TK m I= +v v ω ω
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For a manipulatorFor a manipulator

� Take the joint angles as variable, write the 
position x of the links, write down K, P and 
the external forces
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( ) ( , ) ( )M h g= + +τ q q q q q qɺɺ ɺ ɺ

Inertia (generalized)

External forces
(control) Coriolis, centrifugal effects

Gravity

ComplexityComplexity

� Newton-Euler: 

� Lagrange:

RA 2008

4

( )

( )

o n

o n

Estimation

• Kinematics → just measure the params

• Dynamics → estimate from data

DynamicsDynamics

� Direct dynamics:

RA 2008

( ) ( )t q tτ →

• Simulation (integrate the equations –

Runge-Kutta, Euler, etc.)

• Inverse dynamics:

( ) ( )q t tτ→

Dynamics and controlDynamics and control

� Case 1: parameters are such that feedback 
gain at each joint is >> gravity, Coriolis, 
centrifugal, disturbances, etc.

� Case 2: feedback in not enough for high-speed, 
precision, etc. → compensation is required

RA 2008

Case 1Case 1

� Approx behavior:

RA 2008

*[ ] 0A B k+ + − =q q q qɺɺ ɺ

• Can design k or a PID controller to make 

this system behave as desired

Case 2Case 2

� Let’s imagine we know all the parameters with 
a certain precision:

RA 2008

( ) ( , ) ( )M h g= + +τ q q q q q qɺɺ ɺ ɺ

( ) ( , ) ( )control M h g= + +τ q u q q q qɺ ɺ

( ) ( , ) ( ) ( ) ( , ) ( )M h g M h g+ + = + +q q q q q q q u q q q qɺɺ ɺ ɺ ɺ ɺ

( ) ( )M M=q q q uɺɺ

* * *( ) ( )d pk k= + − + −u q q q q qɺɺ ɺ ɺ
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Case 2 (continued)Case 2 (continued)

� Appropriate design of the gains can get arbitrary 
exponential behavior of the error
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* * *( ) ( )d pk k= + − + −u q q q q qɺɺ ɺ ɺ

* * *( ) ( )d pk k= + − + −q q q q q qɺɺ ɺɺ ɺ ɺ

=q uɺɺ

*= −e q q

0 d pk k= + +e e eɺɺ ɺ

t

e


