Robotica Antropomorfa
Lezione 2
os 2nos

Mechanical systems

- Things we'd like to model with some physics

RA 2005

How to describe things mathematically

- One reference frame per link
- Not needed for now...

Let's move to something simpler...

$$
\begin{array}{cl}
F=\frac{d}{d t}(m v) & \text { Since links are physical objects with mass } \\
F=M g & \text { Since in most cases gravity applies } \\
F=k\left(x-x_{0}\right) & \text { Springs }
\end{array}
$$

Parallel axis theorem

$$
\begin{gathered}
J_{y}=\rho \int^{2} d V=\rho \int_{-1 / 2}^{l / 2} x^{2} d x=\left.\rho \frac{1}{3} x^{3}\right|_{-l / 2} ^{1 / 2}=\frac{M l^{2}}{12} \\
J_{y=-l / 2}=\frac{M l^{2}}{12}+M \frac{l^{2}}{4}=M \frac{l^{2}}{3}
\end{gathered}
$$

Things you need to do for certain robots

- Balance a load against gravity (static)
- Higher moment of inertia (difficult to accelerate)

Experimental estimation of J

$$
f \approx \frac{1}{2 \pi} \sqrt{\frac{M g h}{J}}
$$

Experimental estimation of J

Use a photodiode and a computer to measure the frequency

Requires calibration from known J

$$
f=\frac{1}{2 \pi} \sqrt{\frac{K}{J}}
$$

Work and power

- Needed when talking about dynamics

$$
\begin{aligned}
& E=\text { const } \quad \text { if } \quad \sum F_{\text {ext }}=0 \\
& W=\int^{s 2} F d s \quad W=\Delta E, E=\text { energy } \\
& W=\frac{1}{2} M v_{1}^{2}-\frac{1}{2} M v_{2}^{2} \quad \begin{array}{c}
\text { work done to conarge } \\
\text { the kineficic enerigy }
\end{array} \\
& W=M g h_{1}-M g h_{0} \quad \begin{array}{c}
\text { Work done to move from to to } \\
\text { (against the gravity fied) }
\end{array} \\
& P=\frac{d W}{d t} \quad \text { Power } \rightarrow \quad P=F v
\end{aligned}
$$

Power is sometimes dissipated in heat

$$
P=F v \quad P_{\text {fricion }}=B v^{2}
$$

Rotational case

$$
\begin{array}{cc}
E=\text { const } & \text { if } \quad \sum \tau_{\text {ext }}=0 \\
W=\int_{\vartheta 1}^{\vartheta 2} \tau d \vartheta & W=\Delta E, E=\text { energy } \\
K=\frac{1}{2} J \omega^{2} & \text { kinetic energy } \\
P=\frac{d W}{d t} & \begin{array}{c}
\text { Power } \rightarrow \\
\end{array} \quad P=\tau \omega \\
\text { RA } 2005
\end{array}
$$

