Robotica Antropomorfa
Lezione 3
os205

Continuing the modeling of the single joint

Motor
- Let's imagine for now that it is
something that generates a given torque
RA 2005

Mechanical transmission

- Gears
- Belts
- Lead screws
- Cables
- Cams
- etc.

- Distance traveled is the same:

$$
r_{1} v_{1}=r_{2} v_{2}
$$

- Because the size of teeth is the same:

$$
\frac{N_{1}}{r_{1}}=\frac{N_{2}}{r_{2}}
$$

Gearhead (for real)

Copyrignt © 1988
by Minimolor SA

Furthermore...

$r_{1} \vartheta_{1}=r_{2} \vartheta_{2}$
$\frac{N_{1}}{r_{1}}=\frac{N_{2}}{r_{2}}$

- No loss of energy $\tau_{1} \vartheta_{1}=\tau_{2} v_{2}$

Equivalent J

$$
\begin{aligned}
& \ddot{v}_{1} J_{1} \Leftarrow \tau_{1}=\tau_{2} \frac{N_{1}}{N_{2}}=\ddot{v}_{2} J_{2} \frac{N_{1}}{N_{2}} \\
& J_{1}=\frac{\ddot{v}_{2}}{\ddot{v}_{1}} J_{2} \frac{N_{1}}{N_{2}} \Rightarrow\left(\frac{N_{1}}{N_{2}}\right)^{2} J_{2}
\end{aligned}
$$

$$
J_{1}=T R^{2} J_{2}
$$

- J as seen from the motor

In reality

$$
\tau_{\text {out }}=\tau_{\text {in }} \frac{1}{T R} \eta
$$

- Where η is the efficiency of the mechanism
- η is related to power, speed ratio doesn't change
- η is also the ratio of input power vs. power at the output

Example

- From catalog (reduction gearbox):
$-4: 1=90 \%$
$-16: 1=80 \%$
- $64: 1=70 \%$
$-256: 1=60 \%$
$-1024: 1=55 \%$

Motion conversion

- Start with

$$
\tau_{2}=\frac{N_{2}}{N_{1}} \tau_{1}
$$

- Design $T R$, more torque (usually)

$$
\begin{gathered}
T R<1 \\
N_{2}>N_{1} \\
J_{1}<J_{2} \Leftrightarrow \omega_{2}<\omega_{1} \\
\text { RA } 2005
\end{gathered}
$$

Viscous friction

- Easy:

$$
\begin{aligned}
& \tau_{\text {viscous }}=B_{2} \dot{\vartheta}_{2} \\
& \tau_{\text {eq- viscous }}=T R \cdot \tau_{\text {viscous }}=T R \cdot B_{2} \dot{\vartheta}_{2} \\
& B_{\text {eq }} \dot{\vartheta}_{1}=T R \cdot B_{2} \dot{\vartheta}_{2} \Rightarrow B_{\text {eq }}=T R^{2} B_{2}
\end{aligned}
$$

- Coulomb friction:

$$
\tau_{e q}=T R \cdot F_{c} \operatorname{sgn}\left(\dot{\vartheta}_{2}\right)
$$

Example

- Designing the single joint
- Given:

$$
\ddot{\vartheta}_{\max } \Rightarrow \tau=J_{e q} \ddot{\vartheta} \Rightarrow \tau_{\max }=J_{e q} \ddot{\vartheta}_{\max }=J_{\text {load }} T R^{2} \ddot{\vartheta}_{\max }
$$

- Then taking into account some more realistic components:

$$
\tau_{\max }=J_{\text {load }} \frac{T R^{2}}{\eta} \ddot{\vartheta}_{\max }
$$

Example (continued)

$$
\tau_{\max }=J_{\text {load }} \frac{T R^{2}}{\eta} \ddot{\vartheta}_{\max }
$$

More on real world components

- Efficiency
- Eccentricity
- Backlash
- Vibrations
- To get better results during design mechanical systems can be simulated

