Robotica Antropomorfa

Lezione 4 New version

OS 2005

Components

- Digital microprocessor (DSP)
- Amplifier (drives the motor)
- Actuator
- Mechanics/load
- Sensors

RA 2005

Analysis tools

- Root locus
- Frequency response

RA 2005

Actuators

- Various types:
 - AC, DC, etc.
 - -DC
 - Brushless
 - With brushes
- We'll have a look at the DC with brushes, simple to control, widely used in robotics

Modeling the DC motor

- High stall torque
- Speed-torque and torque-current relationships are linear

RA 2005

Electrical schema

$$E_g = \omega(t) K_E$$

RA 2005

Meaning of components

 R_a

• Armature resistance (including brushes)

 V_{arn}

• Armature voltage

 R_{i}

• Losses due to magnetic field

 E_{ϱ}

• Back EMF produced by the rotation of the armature in the

field

 L_a

• Coil inductance

RA 2005

We can write...

$$V_{arm} = R_a I_a + L_a \dot{I}_a + \omega(t) K_E$$
 for $R_l \ll R_a$

which is the case at the frequency of interest, and we also have...

$$\tau = K_T I_a$$

On torque and current

Thus for many coils...

Back to motor modeling...

$$\tau = (J_M + J_L)\dot{\omega}(t) + B\omega(t) + \tau_f + \tau_{gr}$$

au • Torque generated

 $J_{\scriptscriptstyle M}$ • Inertia of the motor

 $J_{\scriptscriptstyle L}$ • Inertia of the load

 au_f • Friction

 τ_{gr} • Gravity

RA 2005

Furthermore...

$$\begin{aligned} V_{arm} &= R_a I_a + L_a \dot{I}_a + \omega(t) K_E \\ \tau &= K_T I_a \\ \tau &= (J_M + J_L) \dot{\omega}(t) + B\omega(t) + \tau_f + \tau_{gr} \end{aligned}$$

RA 2005

By Laplace-transforming

$$V_{arm}(s) = R_a I_a(s) + L_a I_a(s) s + \omega(s) K_E \Rightarrow I_a(s) = \frac{V_{arm}(s) - \omega(s) K_E}{R_a + L_a s}$$

$$\tau = K_T I$$

$$K_T \frac{V_{arm}(s) - \omega(s)K_E}{R_a + L_a s} = (J_M + J_L)\omega(s)s + B\omega(s) + \tau_f + \tau_{gr}$$

RA 2005

and finally

$$\frac{\omega(s)}{V_{arm}(s)} = \frac{K_T/L_a J_T}{s^2 + [(R_a J_T + L_a B)/L_a J_T] s + (K_T K_E + R_a B)/L_a J_T}$$

 Considering gravity and friction as additional inputs

Analysis
$$H_{open_loop} = \frac{AK_m K_p (1 + s \frac{K_g}{K_p})}{(1 + s\tau_a)(1 + s\tau_m)s}$$

$$K = AK_m K_p$$

$$Z_{feedback} = \frac{K_g}{K_p}$$
RA 2005

Error and performance
$$\vartheta = \frac{\vartheta_d}{s} \qquad M(s) = \frac{K_T}{(R_a + sL_a)(B + sJ_T) + K_E K_T}$$

$$\vartheta(s) = \frac{1}{s} \omega(s)$$

$$\varphi(s) = \frac{\frac{1}{s} \omega(s)}{1 + \frac{1}{s} \omega(s)K_p}$$

$$\varphi(s) = \frac{\frac{1}{s} \omega(s)}{1 + \frac{1}{s} \omega(s)K_p}$$

$$RA 2005$$

finally

$$\lim_{s \to 0} sH(s) = \lim_{t \to \infty} h(t)$$

$$\Rightarrow \lim_{s \to 0} s \frac{\vartheta_d}{s} \vartheta(s) = \lim_{s \to 0} \frac{s \frac{1}{s} \frac{\vartheta_d}{s} \omega(s)}{1 + \frac{1}{s} \omega(s) K_p} = \frac{\vartheta_d}{K_p}$$

• For zero error *K* must be 1 or the control structure must be different

RA 2005

Same line of reasoning

$$\vartheta_{final} = -\frac{T_L R_a}{A K_T K_p}$$

• Final value due to friction and gravity

$$\left| \frac{T_L R_a}{A K_T K_p} \right| \leq \mathcal{O}_{\text{max}} \Longrightarrow K_p \geq \frac{T_L R_a}{A K_T \mathcal{O}_{\text{max}}}$$

$$K_{p \min} = \frac{T_L R_a}{A K_T \vartheta_{\max}}$$

RA 2005

PID controller

RA 2005

PID controller

- We now know why we need the proportional
- We also know why we need the derivative
- Finally, we add the integral
 - Integrates the error, in practice needs to be limited

RA 2005

Interpreting the PID

- Proportional: to go where required, linked to the steady-state error
- Derivative: damping
- Integral: to reduce the steady-state error

RA 2005

About the amplifiers

- Linear amplifiers
 - H type
- T type
- PWM (switching) amplifiers

Let's consider the linear as a starting point

H-type

- The motor doesn't have a reference to ground (floating)
- It's difficult to get feedback signals (e.g. to measure the current flowing through the motor)

RA 2005

T-type

RA 2005

On the T-type

- Bipolar DC supply
- Dead band (around zero)
- Need to avoid simultaneous conduction (short circuit)

RA 2005

Things not shown

- Transistor protection (currents flowing back from the motor)
- Power dissipation and heat sink
 - Cooling
- Sudden stop due to obstacles
 - High currents \rightarrow current limits and timeouts