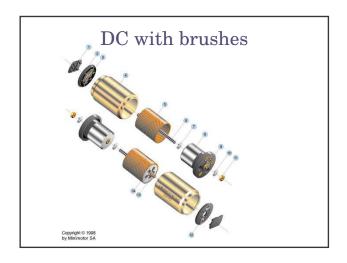
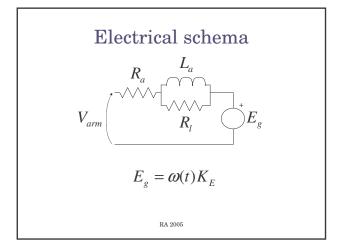

Robotica Antropomorfa Lezione 5



Actuators

- Various types:
 - -AC, DC, etc.
 - -DC
 - Brushless
 - With brushes
- We'll have a look at the DC with brushes, simple to control, widely used in robotics

RA 2005



Modeling the DC motor

- High stall torque
- Speed-torque and torque-current relationships are linear

Meaning of components

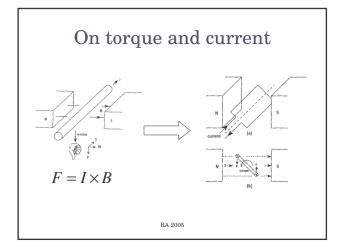
 R_a • Armature resistance (including brushes)

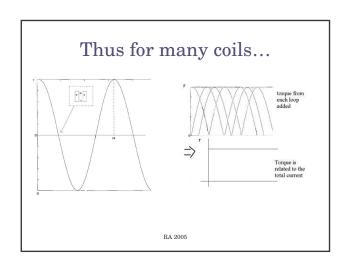
 V_{arm} • Armature voltage

 R_l • Losses due to magnetic field

 $E_{\rm g}$ • Back EMF produced by the rotation of the armature in the field

 L_a • Coil inductance


RA 2005


We can write...

$$V_{arm} = R_a I_a + L_a \dot{I}_a + \omega(t) K_E$$
 for $R_l \ll R_a$

which is the case at the frequency of interest, and we also have \ldots

$$\tau = K_T I_a$$

Back to motor modeling...

$$\tau = (J_M + J_L)\dot{\omega}(t) + B\omega(t) + \tau_f + \tau_{gr}$$

au • Torque generated

 $J_{\scriptscriptstyle M}$ • Inertia of the motor

 J_L • Inertia of the load

 au_f • Friction

 au_{gr} • Gravity

RA 2005

Furthermore...

$$V_{arm} = R_a I_a + L_a \dot{I}_a + \omega(t) K_E$$

$$\tau = K_T I_a$$

$$\tau = (J_M + J_L)\dot{\omega}(t) + B\omega(t) + \tau_f + \tau_{gr}$$

RA 2005

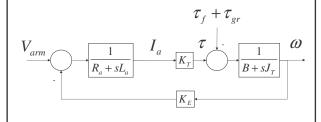
By Laplace-transforming

$$V_{arm}(s) = R_a I_a(s) + L_a I_a(s) s + \omega(s) K_E \Rightarrow I_a(s) = \frac{V_{arm}(s) - \omega(s) K_E}{R_a + L_a s}$$

$$\tau = K_{\tau}I$$

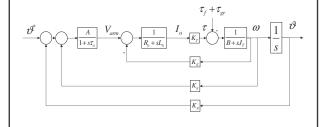
$$K_T \frac{V_{arm}(s) - \omega(s)K_E}{R_a + L_a s} = (J_M + J_L)\omega(s)s + B\omega(s) + \tau_f + \tau_{gr}$$

RA 2005


and finally

$$\frac{\omega(s)}{V_{arm}(s)} = \frac{K_T/L_a J_T}{s^2 + [(R_a J_T + L_a B)/L_a J_T] s + (K_T K_E + R_a B)/L_a J_T}$$

• Considering gravity and friction as additional inputs


RA 2005

Block diagram

RA 2005

Back one lesson

Error and performance

$$\mathcal{\vartheta} = \frac{\mathcal{\vartheta}_d}{s} \qquad M(s) = \frac{K_T}{(R_a + sL_a)(B + sJ_T) + K_E K_T}$$

$$\mathcal{\vartheta}(s) = \frac{1}{s} \omega(s)$$

$$\omega(s) = \frac{\frac{A}{1 + s\tau_a} M(s)}{1 + \frac{A}{1 + s\tau_a} M(s)K_g}$$

$$\mathcal{\vartheta}(s) = \frac{\frac{1}{s} \omega(s)}{1 + \frac{1}{s} \omega(s)K_g}$$

finally

$$\lim_{s \to 0} sH(s) = \lim_{t \to \infty} h(t)$$

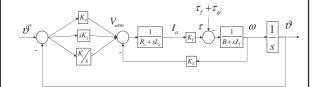
$$\Rightarrow \lim_{s \to 0} s \frac{\vartheta_d}{s} \vartheta(s) = \lim_{s \to 0} \frac{s \frac{1}{s} \frac{\vartheta_d}{s} \omega(s)}{1 + \frac{1}{s} \omega(s) K_p} = \frac{\vartheta_d}{K_p}$$

• For zero error *K* must be 1 or the control structure must be different

RA 2005

Same line of reasoning

$$\vartheta_{final} = -\frac{T_L R_a}{A K_T K_n}$$


• Final value due to friction and gravity

$$\left| \frac{T_L R_a}{A K_T K_p} \right| \le \vartheta_{\text{max}} \Rightarrow K_p \ge \frac{T_L R_a}{A K_T \vartheta_{\text{max}}}$$

$$K_{p \min} = \frac{T_L R_a}{A K_T \vartheta_{\max}}$$

RA 2005

PID controller

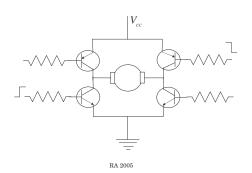
RA 2005

PID controller

- We now know why we need the proportional
- We also know why we need the derivative
- Finally, we add the integral
 - Integrates the error, in practice needs to be limited

RA 2005

Interpreting the PID

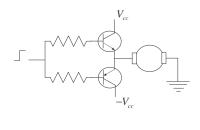

- Proportional: to go where required, linked to the steady-state error
- Derivative: damping
- Integral: to reduce the steady-state error

About the amplifiers

- Linear amplifiers
 - H type
 - T type
- PWM (switching) amplifiers

RA 2005

Let's consider the linear as a starting point



H-type

- The motor doesn't have a reference to ground (floating)
- It's difficult to get feedback signals (e.g. to measure the current flowing through the motor)

RA 2005

T-type

RA 2005

On the T-type

- Bipolar DC supply
- Dead band (around zero)
- Need to avoid simultaneous conduction (short circuit)

RA 2005

Things not shown

- Transistor protection (currents flowing back from the motor)
- \bullet Power dissipation and heat sink
 - Cooling
- Sudden stop due to obstacles
 - High currents \rightarrow current limits and timeouts

to be continued...