Robotica Antropomorfa
Lezione 6
os2055

About the amplifiers

- Linear amplifiers
- H type
- T type
- PWM (switching) amplifiers
T-type

PWM signal

$P=V_{c e} I_{c}$

- Transistors either "on" or "off"
- When off, current is very low, little power too
- When on, V is low, working point close to (or in) saturation, power dissipation is low

Comparison

- 12 W for a 6 A current using a switching amplifier
- 72 W for a corresponding linear amplifier
Why does it work?
$\frac{\omega(s)}{V_{a r m}(s)}=\frac{K_{T} / L_{a} J_{T}}{s^{2}+\left[\left(R_{a} J_{T}+L_{a} B\right) / L_{a} J_{T}\right] s+\left(K_{T} K_{E}+R_{a} B\right) / L_{a} J_{T}}$
- In practice the motor transfer function is a low-pass filter
T_{s} with $\omega_{s} \gg \omega_{E}\left(\omega_{s}>100 \omega_{E}\right) \quad \bar{V}_{a r m}=\frac{1}{T_{s}} \int_{0}^{T_{i}} V_{a r m}(t) d t$
- Switching frequency must be high enough

Operating characteristic

Current feedback

Motor driven by a current amplifier

$$
\begin{gathered}
V_{i n} \xrightarrow[\left\lvert\, \frac{A}{1+s \tau_{a}}\right.]{I_{a}} \stackrel{I^{K_{T}}}{ } \stackrel{\tau}{\frac{1}{B+s J_{T}}}{ }^{\omega} \\
\frac{\omega(s)}{V_{i n}(s)}=\frac{K_{T} A_{i}}{\left(s J_{T}+B\right)\left(1+s \tau_{a}\right)}
\end{gathered}
$$

Bode plot analysis (in short)

$$
\begin{aligned}
& s=j \omega \quad F T(j \omega) \quad \text { then plot } \quad \begin{array}{l}
20 \log |F T(j \omega)| \\
\angle F T(j \omega)
\end{array} \\
& F T=K \frac{\Pi\left(1+j \omega / \omega_{z i}\right)}{\Pi\left(1+j \omega / \omega_{p k}\right)} \\
& F T=20 \log K+20 \sum \log \left(1+\frac{\omega}{\omega_{z i}}\right)-20 \sum \log \left(1+\frac{\omega}{\omega_{p k}}\right)
\end{aligned}
$$

The plot is accurate for...

- Real valued poles and zeros, no resonance!
- Successive poles/zeros are separate by a factor of 7 or so, they don't interact

Gain and phase margin

$$
G M=-20 \log (|F T|) @ \omega_{\pi}
$$

$$
P M=\pi-\varphi(F T) @ \omega_{0}
$$

Rule of thumb

- Common design objectives:
- Gain margin > 20dB
- Phase margin >45 degrees

Back to the global view

Sensors

- Potentiometers
- Encoders
- Tachometers
- Inertial sensors
- Strain gauges
- Hall-effect sensors
- and many more...

Potentiometer

- Simple but noisy
- Requires A/D conversion
- Absolute position (good!)

Encoder

- Absolute
- Incremental

Incremental encoder

- Disk single track instead of multiple
- No absolute position
- Usually an index marks the beginning of a turn

Incremental encoder

- Sensitive to the amount of light collected
- The direction of motion is not measured

Moreover

- There are "differential" encoders
- Taking the difference of two sensors 180 degrees apart
- Typically
- A, B, Index channel
- A, B, Index (differential)
- A "counter" is used to compute the position from an incremental encoder

Absolute position

- A potentiometer and incremental encoder can be used simultaneously: the pot for the "absolute" reference, and the encoder because of good resolution and robustness to noise

Absolute position
- A potentiometer and incremental encoder can
be used simultaneously: the pot for the
"absolute" reference, and the encoder because
of good resolution and robustness to noise

Two-channel encoder

- 2 channels 90 degrees apart (quadrature signals) allow measuring the direction of motion

Increasing resolution

- Counting UP and DOWN edges
- X2 or X4 circuits

Analog locking

- Use digital encoder as much as possible
- Get to zero error or so using the digital signal
- When close to zeroing the error:
-Switch to analog: use the analog signal coming from the photodetector (roughly sinusoidal/triangular)
- Much higher resolution, precise positioning

Tachometer

- Use a DC motor
- The moving coils in the magnetic field will get an induced EMF

$$
c \oint_{\delta s} \bar{E} \cdot d \bar{l}=\frac{d}{d t} \iint_{s} \bar{B} \cdot d \bar{S}
$$

- In practice is better to design a special purpose "DC motor" for measuring velocity
- Ripple: typ. 3%

As already seen...

Measuring speed with digital encoders

- Frequency to voltage converters
- Costly (additional electronics)
- Much better: in software
- Take the derivative (for free!)

$$
v(k T)=\frac{p(k T)-p((k-1) T)}{T}
$$

Inertial sensors

- Accelerometers:

$M a=2 K x \Rightarrow a=\frac{2 K x}{M}$

Strain gauges

- Principle: deformation $\rightarrow \Delta \mathrm{R}$ (resistance)
- Example: conductive paint (Al, Cu)
- The paint covers a deformable nonconducting substrate

$$
R=\frac{L}{\sigma A} \Rightarrow \Delta L, A=\text { const } \Rightarrow \Delta R
$$

Reading from a strain gauge

$R_{1} R_{2}=R_{g} R_{b} \Rightarrow V_{a b}=0 \quad \Delta V_{a b}=f\left(\Delta R_{g}\right)$

Hall-effect sensors

$$
\vec{F}=k Q \vec{v} \times \vec{B}
$$

Back to the global view

Microprocessors

- Special DSPs for motion control
- Some are barely programmable (the control law is fixed)
- Others are general purpose but they are mixed mode (analog and digital in a single chip)

Example

- DSP 16 bit ALU and instruction set
- PWM generator (simply attach this to either T or H amplifier)
- A/D conversion
- CAN bus, Serial ports, digital I/O
- Encoder counters
- Flash memory and RAM on-board
- Enough of all these to control two motors (either brush- or brushless)

