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Now we take a slightly tangential
route

+ Computational motor control
* Control in biological systems

* There’s something more than the control
of the single joint

+ Study how control is done in biology <>
study how control has to be done in
robotics
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Computational motor control

* Motor control has to do with sensori-
motor transformations

+ Sensory info is clearly in different
format of motor data
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Also, something we haven’t
discussed yet

* The study of the motor system is also
the study of dynamics

F =ma instead of x = f(x,v)
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Theory

» Optimization principles
> Internal models
» Motor learning

* Techniques developed in control theory
and/or robotics applied to the study of
the motor system
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Optimization principles

* Don’t describe the kinematics directly,
rather the movement is described
abstractly

* Global measure (cost):

— Total efficiency
— Smoothness
— Accuracy

— Duration
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Trajectory generation

* This fits in “front” of the “single joint”
controller we've seen so far

* Q: how do we generate a sequence of
reference points for the controller?

trajectory generator % joint controller
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On the trajectory generation

+ Note that the feedback controller by
itself doesn’t necessarily generate
suitable trajectories especially for a
complex kinematic structure (e.g. arm)
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Most studied behavior: reaching

* Despite variation of movement direction,
starting point, etc. there are some
kinematic invariants; most notably:

— Straight trajectory
— Bell shaped velocity profiles

Further...

* There are variation from straightness
especially at the periphery of the
workspace

* Why is it so surprising that trajectories
are straight:

—Joints are rotational — easier to get curved
trajectories
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In addition

* There might be differences (from the
bell-shaped profile) when feedback plays
a role

+ Intuition: when “open-loop” trajectories

are stereotyped otherwise they get
distorted by feedback
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Abstraction

symmetrical

zero acceleration
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Optimization

* Q: what criterion might generate a
similar trajectory profile?
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In formulas

x(t) te[0,T]
cost Vx(¢) »>ceR

g(x(2),t) istantaneous cost
T

J= j 2(x(t),t)dt

+ g represents what is costly for us
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Minimize J

* In general — 2 techniques:
— Dynamic programming
» Computing all possible state transitions and
cumulating the cost, then searching trajectories

that minimize the cost — need to discretize the
state space (curse of dimensionality)

* Variation calculus: finding x(¢) such that </ is
minimized — analytical
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Examples

* Minimum Jerk (proposed by Hogan):

T ;377
sz.ﬁ dt
oL dar’

* By calculus of variation it was shown

that:

x(t) = %, + (x, = x)10( /) =154 +6( 1)’
* It is possible to show that x is straight
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Elaborations

* Don’t want to specify the duration of the
movement

'T[ d’x ’

J= [7{—} +1]dt

A I
time

* This model predicts durations correctly
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Further elaborations

* Minimize torque change — similar to
what jerk is in static conditions
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* This model is due to Kawato
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Considerations

* This description doesn’t imply that the
CNS is actually optimizing anything
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Other 1ssues

+ Hp: use P5(t) as a movement primitive
(computed on-line)

* Superimpose primitives (which primitives?)

Incrementally update (x,x,) in feedback so that

the system responds to perturbations

» Neural net solution — in practice the neural
net does the minimization

* VITE model: feedback + variable gain might
obtain results similar to the optimization
techniques
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Internal models

+ A system that mimics the behavior of a
natural process

* Does the brain rely on internal models?
(see Miall & Wolper paper)

* Types of models:
— Forward models

— Inverse models
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Forward models

+Given the current state and input
predict the next state of the system

* In physiology need to also estimate the
state (measured, sensed) from the raw
sensory input (it might be a complex
computational problem — e.g. 3D from
2D information, etc.)
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Prediction of the causal flow

* The forward model can be seen as a
prediction (anticipation) of the causal
flow

* Being “internal” it can be faster than
reality

+ Example: the prediction of the state of
the motor system due to the outgoing
motor commands
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Example

estimated next state

estimated
state / sensory
—  forward forward feedback
dynamic output "
E— model model
motor
command
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Forward models again

* They're always well defined
* They could be one to one or one to many

* Another example:

— Kinematics: computing the position in space
of the end-effector as a function of the joint
angles
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Formally
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Inverse model

* More difficult: the underlying forward
model can be a one to many, thus not
invertible unless additional constraints
are provided
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Use of models: canceling sensory
re-afferences

Estimated sarmory footas
{corationy discharge)

Effenence
opY

Mator
Command

External
infuences

+ Important for distinguishing our own
motion from the environmental motion
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In biology

+ Ego-motion cancellation in pursuing a
target

+ Efference copy: a copy of the command

* Corollary discharge: the prediction of a
signal computed by the CNS
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State estimation

* How can we (the CNS in fact) integrate
motor and sensory information in
estimate the state of the arm (for
example)?

* Observer:
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motor command
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state estimate
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Internal feedback to overcome
delays

* Feedback:

— Robust, doesn’t require a precise model of
the system to be controlled

— Issue: it suffers from delays
* Feedforward:
— Requires a precise model

— Doesn’t care of delays since the control is
computed in advance
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Delays in the CNS

+ We live delayed of 30-300ms!

+ A fast arm movement can last around
200ms

* Feedforward controllers are required!
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The Smith predictor model
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In practice

+ A forward model + delay estimates the
feedback signal

* This signal is compared with the delayed
feedback and provides a correction due
to feedback to the state estimation (slow,
with some delay, low gain)

+ State estimation proceeds open-loop
otherwise directly from the model (fast,
little delay)
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Moreover...

+ State estimation of course could be
extended into prediction

* Humans can get to zero delay in tasks
where the target follows a predictable
trajectory
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Kalman filter
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In essence

* Under certain conditions Kalman filter
is optimal (linear system, quadratic cost,
Gaussian noise)

X = S Ou) +k(y, —g(f(x,,u,)))
xt+1 = f(xzsut) +§t f iS linear
v, =g(x,)+n, g islinear
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Learning the models

* What does it mean to learn the models?
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How do I get the samples?

* Direct-inverse modeling
* Feedback error learning
* Distal supervised learning
* Reinforcement learning
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Direct-inverse

* Simply send “certain” inputs to the
system and measure the output. Use the
set of samples collected to find the min
of the cost
— If there are many solutions to the problem
(e.g. redundancy) the direct-inverse
approach is not well behaved

— For linear or otherwise simple problems the
approach can work
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Example

+ Archery problem: goal of the controller is to
determine the angle

target

9 g
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Feedback error learning

+ Use something simpler to bootstrap
learning of something more complicate

training signal
«

Yy
Y/ H T
Controller

RA 2004

Example Distal supervised learning
O target O target training signal
u/b
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Reinforcement learning RL (2)

* Reduced feedback from the environment

<

Yy Contfoller H

RL algorithm Environment
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* ris a scalar, much harder problem than
anything we’ve seen so far

* Interaction with the environment is
explicit

+ Link of RL to dynamic programming, in
practice RL is an approximation of DP

* It can solve difficult problems and it can
generate controllers that perform better
than the teacher
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Why is it so hard?

O target 0O target

supervised learning

N ) reinforcement learnin,
(anything we’ve seen so far) 9

(get only the magnitude of y)

y b
starting point starting point

Need to reconstruct a gradient from a scalar
information (at best), in many cases information is
even poorer (imagine playing chess: you only get
information at the end of the game)
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