

Composition

- Muscles: consist of muscle fibers
- Fibers: cells
- Cells: contain myofibrils
 - That contract in response to neural or electrical stimuli
- Cylindrical elements (sarcomere) - Smallest contractile elements

Motor unit

- A motor neuron innervates many fibers

 number of fibers/number of motor neurons
 → innervation ratio
- * 10 \rightarrow finer control (eye muscles)
- $100 \rightarrow \text{hand muscles}$
- 2000 \rightarrow leg muscles (big)

 $\rm RA\ 2004$

Fast fatigable	Slow fatigue resistant	Fast fatigue resistant
	(1-10% of total force)	
Few mitochondria (ATP)	Oxidative metabolism	In between the fast and slow
Anaerobic glycogen (for energy)	More mitochondria	
	Low rate of ATP consumption	
100 times more force		
Periphery of muscle (do not consume much)	Central part (more blood, more oxygen)	
Ocular muscle (mostly fast)	RA 2004	

Same equilibrium point, different muscular activation

- Reciprocal activation
- Co-contraction
- If the model is known (e.g. the load, limb parameters, etc.) reciprocal activation is better

 $\operatorname{RA} 2004$

Low-pass behavior

- Empirically measured - Sinusoidal stimulations, measure the force
- The muscle behaves as a low pass filter of the neural input

Golgi tendon organs

- ${\boldsymbol{\cdot}}$ Measure tension
- ${\boldsymbol{\cdot}}$ Afferent fibers are called group Ib
- Can build a feedback loop to maintain a certain tension

- μ is the relative measure of spindle's primary vs. secondary gain (damping) in reality it could be another control parameter
- λ is the control variable
- l is the length

More...

$$A = \left| l(t-d) - \lambda(t) - \mu \dot{l}(t-d) \right|$$

• d is a delay of about 25ms

 $\tilde{M} = \rho[\exp(cA) - 1]$

- ρ , *c* are two fitting parameters
 - $-\rho$ represents a scaling (size of muscle)
 - -c represents the recruitment (speed of
 - activation of different fibers)

RA 2004

Further...

$\tau^2 \ddot{M} + 2\tau \dot{M} + M = \tilde{M}$

• Filtering effect due to calcium kinetics

 $F = M[f_1 + f_2 \tan^{-1}(f_3 + f_4 \dot{l})] + k(l - r)$

• Actual dependency on speed and length (reflexes) modeled as a sigmoid plus a linear function

RA 2004

Two classes of commands

- $\mathrm{R} \rightarrow \mathrm{reciprocal}$ activation
- C \rightarrow co-contraction
- R,C can be used to compute the λs
- Clearly to set λs exactly we need to have a knowledge of muscles' geometry and forces
- Hypothesize that R,C can be simple enough to generate nice trajectories

RA 2004

Changing R and C

- Changing R and C for various muscles changes the equilibrium point of the limb
- EP hypothesis
 - To control the limb position the brain has "only" to move the EP to the desired position following a certain profile
 - Depending on the stiffness (of the limb) the actual trajectory will be close (or not that close) to the EP trajectory