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Kinematics

¢ Kinematics:
— Given the joint angles, compute the hand position

x=A(q)
¢ Inverse kinematics:

— Given the hand position, compute the joint angles
to attain that position

q=A"(x)

* As usual, inverse problems might be
troublesome!
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Kinematics

® Inverting:
— Geometrically: closed form solution exists in
certain cases
— By minimization:

J = %”x —A(q)"2 = q=argminJ
q

¢ Kinematic redundancy: more joints than constraints
— E.g. arigid body (hand) in space is described by 6 numbers
(position + orientation). A robot (or human) arm might have 7
or more joints (degrees of freedom)
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Representing kinematics

* Representing rotations and translations
between coordinate frames of reference

<A

Ay =[7%v X g
5. Ya
XA Vg

=[x, 1ty 172,15y ="R,"y B—A

“x, = "R, "x, = “R,[1,0,0]
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Rotation matrix

ARB(ARB)T :I P (ARB)T :(ARB)—I — BRA

Orthogonal matrix

cos?? —sind 0
Example: rotation along the Zaxis | sin¢* cos?® O
0 0 1
cos? A= 2
Yx, =|sind® Xp,
Y Ya
Av Xy 0 X4 Y
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More simple rotations

cos* 0 sin®}
Example: rotation along the Y axis 0 1 0
—sin?t 0 cos?
1 0 0
0 cos?? —sin?? Example: rotation along the X axis
0 sin?d cos?}
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Representing 3D rotations

® Sequences of elementary rotations
—Euler angles: z, y, z or z, x, z
—Roll, pitch, yaw angles: z, y, x
— Vector (axis of rotation) and angle

RA 2005

Roto-translation
e Rotation combined with translation
Ay = ARB By + AOB
T
A
o,
X, /A/XA' Va

Vg
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Homogeneous representation
* To make things uniform

A _ Ap B A
v="R, v+ "0,

AV B ARB AOB BV
1 0 1 1
=T, dim(v)=4
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Clearly

Av:ATBBTCCv C—oA
ARB AOB h _ AR; _ARg AOB
0 1 0 1
AT1971 = BTA

¢ Composition of transforms
¢ Inverse of a rototranslation
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Direct kinematics

<0>
[ n-1
Ti(q)---""T,(q,)

(x,y,2)="T.(9,-4,-95-9,) - (0,0,0)"

x=A(q)
orientation = A(q)
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Conventions

* For placing the reference frames on each link
— Denavit-Hartenberg

* Many times DH parameters are given for a

manipulator (and various useful equations are
also given wrt DH convention)

RA 2005

Inverse kinematics

® Direct approach

* Geometric

® Minimization

® Neural network, learning
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Inverse kinematics

® Direct approach
—Try solving:
x=NL(4,.9,.95.49,)
y=NL,(4,.4,.45.9,)
2=NL.(4,:9,-45-9.)

for ¢,,4,.49;.4,
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Geometric approach

® For certain manipulator the solution
exists in close form

— Decomposable structures (e.g. translation
and rotations can be handled separately)

— Rotations follow certain rules

® Many industrial manipulators were
designed with inverse kinematics in
mind
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Minimization
¢ Find the solution to:

J= %”x ~A(q)|" = q=argminJ
q

* Neural network/learning:
(q,x) > A

* Approximate the inverse out of a family
of functions (NN approach) starting from
examples

RA 2005

What about velocity?
e Jacobian matrix
x4y
dq dq,
x=Adq) =X = ;|
V=" ' | dr
dx, = dx,
dql dqm
dx dq
2 J(q)-—=2
dt @ dt
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Note on representing velocities
e If x is:

x=(x,y,2,0,0.¥)
* Position + Euler angles

V= (vx,vy,vz,zi‘,(j),l/'/)
¢ Euler angles derivatives do not have any
clear physical meaning
v=(v,v,,V,,0)
* Angular velocity (rate of rotation along
the axis
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Anyway...

* Just make sure the representation and
the equations are consistent

v:(vx,v},,vz,lj,¢,l/'/):> J,

V=(VX,V),,VZ,(1)):> J,
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Jacobian

e Formula
— Given the DH representation of transformations
— Considering only rotational joints

J,=[J,1J,---J, 1 forn joints

o o o
J = ;X P, p,
<e>

i

Having written
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When J is invertible

* Can compute the joint velocities to
obtain a certain hand velocity
q=J %
¢ I[f n>6, redundancy:
q=J'%+I-J"Dk
* k is a constant vector
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Troubles

* Even if n<6 there are many situations
where ¢/ cannot be inverted
(singularities)

— Movement singularities (chain of rotations)

— o not invertible because certain elements go
to zero
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Resolved rate controller

1 Joint
controllers

Sensors

RA 2005

Static
* Relationship between forces and torques
dx = Jdq
dq"t=dx'F
dq't=dq"J'F
U
t=J'F
* Imagining the integrals where

appropriate
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Another idea

t=J'F

® Use this equation to design a force
controller:

— Given F compute the torques to drive the
joints
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Dynamics

* Two methods to derive the equation of
motion (differential equations)
— Newton-Euler
— Lagrange formalism
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Newton-Euler

* Start from: |p_d (mv)
dt
d

T=— (o
” (o)
d
F= = (mv)
! Write down every equation (6):
d . find the angular velocity and
T :E([(’J) =oX(/o)+/o I with respect to a base frame

kinematics
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Lagrange formulation

* Lagrange equations:

L=K-P
X =x N;
S %_d[%]_ﬂ o
u “ aqi dt aq; aqi
/ T 1 7
External forces K=—mv v+—o lo
(no potential) 2 2
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For a manipulator

* Take the joint angles as variable, write
the position x of the links, write down K,
P and the external forces

T=M(Qq+h(q.Qq+g(q)
/ / \ ™~ Gravity

External forces

(control) Inertia (generalized) Coriolis, centrifugal effects
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Complexity
e Newton-Euler: o(n)
* Lagrange: o(n*)
Estimation

¢ Kinematics — just measure the params
® Dynamics — estimate from data

RA 2005

Dynamics

® Direct dynamics:

7(t) — q(1)
¢ Simulation (integrate the equations —
Runge-Kutta, Euler, etc.)

* Inverse dynamics:
q(t) > ()
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Dynamics and control

® Case 1: parameters are such that
feedback gain at each joint is >> gravity,
Coriolis, centrifugal, disturbances, etc.

® Case 2: feedback in not enough for high-
speed, precision, etc. — compensation is
required
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Case 1

* Approx behavior:

Ad+Ba+klq—q'1=0

® Can design % or a PID controller to make
this system behave as desired
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Case 2

® Let’s imagine we know all the
parameters with a certain precision:

T=M(q)q+h(q,q)q+g(q)
T v =M (@Qu+h(q,)q+ g(q)
M (q)q+h(q,q)q+g(q) =M (qu+h(q,q)q+g(q)
M(q)q=M(q)u
u=q +k,(q - +k,(q —q)
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Case 2 (continued)
g=u
u=q +k, (@ -Q+k,(q -q)

=4 +k, (4 - +k,(q -q)

e=q —q
O=é+ke+ke

* Appropriate design of the gains can get
arbitrary exponential behavior of the error
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