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Open Questions

•How do we choose muscle activations so as to obtain a given joint torque?

•Which is the minimum number of elementary force fields that we need to 
perform a ‘complete’ set of movements?

•Is there a way of choosing the primitives to accommodate different 
kinematic structures?

•How can we predict the trajectory followed by the system when it is driven 
by a given force field F? (Dynamic model of the limb)

•Is there a way of choosing the ‘complete’ set of elementary force fields Fk? 
(A trivial solution to the spinal field synthesis problem)

•How should we choose joint torques � so as to obtain a given basis force 
field Fk? (The map � -> Fk)
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A (not so trivial) observation

Applied 
force

In which direction will the end-effector move?

Applied force

direction

WRONG!!
Applied 
force

direction
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Control Model of the spinal field experiment

The spinal fields experiment has been modeled in terms of the 
linear superposition of a finite number of force fields: 
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Force fields in this model depend also on 
the velocity of P. This new feature is 
justified if we want to introduce a certain 
degree of damping in the system. 

Today we use a different notation:

zvzP P �↔↔

End effector
position

End effector
velocity
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Modelling a limb as a kinematic chain

• It is composed by n links L1, …, Ln

• Lj is attached to Lj-1 by a 1 DOF rotational joint (non 
restrictive assumption)

• the joint angle (between Lj-1 and Lj) is denoted qj

• the end-effector position will be denoted z and belongs 
to an m-dimensional space, with m�n.

A kinematic chained has the following properties:
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Example: 2DOF planar kinematic chain (1/2)
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Example: 2DOF planar kinematic chain(2/2)

• Direct kinematics:
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• Jacobian:
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Dynamic model of the limb (1/3) “repetita iuvant”

• The dynamic model of a kinematic chain describes the map from 
applied forces to trajectories of the joint variables. Let the applied 
forces be the vector of applied torques. Then:
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Integration of 
the dynamic 
model 

Time evolution of the 
applied torques

Time evolution of the 
joint angles
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Dynamic model of the limb (2/3) “repetita iuvant”

• The dynamic model can be computed following the Lagrangian
approach:
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Kinetic 
energy

Potential 
energy

computations

τ=++ )(),()( qGqqqCqqM ����

Inertia Matrix
Coriolis matrix Gravity effect
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Dynamic model of the limb (3/3)

• LEMMA: the matrices of the dynamic model of a kinematic chain 
satisfy the following two properties:

0)()()1( >= TqMqM

),(2)()2( qqCqM �� − is skew symmetric

Follows from the fact 
that the kinetic energy is 
� zero and equals zero 
only at rest

(passivity property) It 
implies that in absence of 
friction the total energy of 
the system is conserved

A given matrix A is skew 
symmetric if and only if:

TAA −=

28/10/2005 11

Example: dynamics of 2DOF planar chain (1/4)

2q

1q1τ

2τ

1m

2m

On the horizontal 
plane, i.e. NO 
GRAVITY!

2
22

2
11 ),(

2
1

),(
2
1

),( qqvmqqvmqqK mm ��� +=

Velocity 
of m1

Velocity 
of m2

28/10/2005 12

Example: dynamics of 2DOF planar chain (2/4)

• Computing the velocities:
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Example: dynamics of 2DOF planar chain (3/4)

• Kinetic energy:
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• Dynamics:
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No potential energy since 
we are not considering 
gravity

This matrix will turn out to be the inertia matrix

28/10/2005 14

Example: dynamics of 2DOF planar chain (4/4)
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Given the applied torques the joint trajectories 
can be obtained integrating this dynamical 
equation!

)(qM ),( qqC �

),(2)( qqCqM �� −

Try to verify the skew symmetry 
of the matrix
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State Space form of the dynamic equation

Therefore all tools of (nonlinear) dynamical 
systems theory can be used!

τ=++ )(),()( qGqqqCqqM ����

Can be rewritten in the 
standard state space form
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PD control of a kinematic chain

Without loss of generality let us assume G(q) = 0. If this is not 
the case let us assume that it has been compensated choosing:

)(ˆ qG+= ττ τ̂),()( =+ qqqCqqM ����

• FACT: the following PD (proportional + derivative) control law:

( )dpv qqKqK −−−= �τ̂
Is such that the corresponding system has a unique equilibrium point 
(qd) which is globally asymptotically stable.

• PROOF: (sketch) try to use the following Lypunov function:
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and take advantage of the passivity property.
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Back to Bizzi’s experiment
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In case of non-redundant manipulators, we the following equivalences:

τ↔F
�

qz ↔ qz ��↔

And therefore the spinal field model can be rewritten as follows:

Basis field should be 
convergent to an equilibrium

PRB: How should we choose the elementary control actions so that:

1. Each elementary controller should drive the system towards a 
unique (globally asymptotically stable) equilibrium point

2. The combinations of the elementary controllers should be 
capable of driving the system to any desired configuration
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A trivial solution to the synthesis problem (1/2)

HINT: convergent to the equilibrium 
qd,k( )kdpvk qqKqK ,−−−= �τ
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A trivial solution to the synthesis problem (2/2)

Rewriting the previous expression:
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Which has a solution for any qd if and only if the matrix on the left has full 
row rank. This observation gives a criteria to choose the equilibrium point 
realized by the elementary controls.

Moreover, we can have full row rank only if:

1+≥ nK

1+n

K

This can be proven to be the 
minimum number of 
primitives necessary to 
control a n-DOF kinematic
chain!
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Back to the end-effector space

In the redundant case we can go back :

Using the following equations:
The direct kinematics can be (locally) inverted: 

INVERSE KINEMATIC

�
=

=
K

k
kk zzFzzF

1

),(),( �
�

�
�

λ�
=

=
K

k
kk qqqq

1

),(),( �� τλτ

FqJqq T
�

� )(),( =τ ),()(),( qqqJqqF T ��
�

τ−=

)(qz Λ= )(zq invΛ=

qqJz �� )(= [ ] zzJq inv ��
1))(( −Λ=zqJq �� 1)( −=

))(),(())((),( zqJzzJzzF invinv
T

��
�

ΛΛ= − τ
�

�

28/10/2005 21

Graphical representation of the fields(2DOF chain)

Can be graphically represented (null 
velocities):
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),( qqk �τ

1q

)0,(qkτ

)()0,( ,kdpk qqKq −=τ
EXAMPLE Identity

2q kdq ,

),( zzFk �
�

Looks quite different in the 
Cartesian space: )0,(zFk

�

�
�

�
�
�

�
=

P

P

y

x
z

Py

Px

Interested?

Check out my web page 

(http://www.dei.unipd.it/~iron)

and have a look at Bizzi Lab web site 
(http://web.mit.edu/bcs/bizzilab/)


