

Control Model of the spinal field experiment
The spinal fields experiment has been modeled in terms of the linear superposition of a finite number of force fields:

Today we use a different notation:

$$
\begin{array}{lll}
\begin{array}{ll}
\begin{array}{l}
\text { End effector } \\
\text { position }
\end{array} & \begin{array}{l}
\text { End effector } \\
\text { velocity }
\end{array} \\
\hline P \leftrightarrow+z & v_{P} \leftrightarrow \dot{z}
\end{array} & \square \vec{F}(z, \dot{z})=\sum_{k=1}^{K} \lambda_{k} \vec{F}_{k}(z, \dot{z})
\end{array}
$$

$$
28 / 10 / 2005 ~ 4
$$

Modelling a limb as a kinematic chain

A kinematic chained has the following properties:

- It is composed by n links L_{1}, \ldots, L_{n}
- L_{j} is attached to $\mathrm{L}_{\mathrm{j}-1}$ by a 1 DOF rotational joint (non restrictive assumption)
- the joint angle (between $\mathrm{L}_{\mathrm{j}-1}$ and L_{j}) is denoted q_{j}
- the end-effector position will be denoted z and belongs to an m -dimensional space, with $\mathrm{m} \leq \mathrm{n}$.

Dynamic model of the limb (1/3) "repetita iuvant"

- The dynamic model of a kinematic chain describes the map from applied forces to trajectories of the joint variables. Let the applied forces be the vector of applied torques. Then:
$\underbrace{\left[\begin{array}{c}\tau_{1}(t) \\ \vdots \\ \tau_{n}(t)\end{array}\right] \quad t \in\left[\begin{array}{ll}t_{1} & t_{2}\end{array}\right]}$

Time evolution of the applied torques

Dynamic model of the limb (2/3) "repetita iuvant"

- The dynamic model can be computed following the Lagrangian approach:

$\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\tau \quad$ where $\quad L(q, \dot{q})=\underbrace{K(q, \dot{q})}_{$| Kinetic |
| :---: |
| energy |$}-\underbrace{V(q)}_{$| Potential |
| :---: |
| energy |$}$

Example: dynamics of 2DOF planar chain (2/4)

- Computing the velocities:

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{m 1} \\
y_{m 1}
\end{array}\right]=\left[\begin{array}{l}
l_{1} c_{q 1} \\
l_{1} s_{q 1}
\end{array}\right] \quad v_{1}(q, \dot{q})=\left[\begin{array}{c}
\dot{x}_{m 1} \\
\dot{y}_{m 1}
\end{array}\right]=\left[\begin{array}{cc}
-l_{1} s_{q 1} & 0 \\
l_{1} c_{q 1} & 0
\end{array}\right]\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{m 2} \\
y_{m 2}
\end{array}\right]=\left[\begin{array}{l}
l_{1} c_{q 1}+l_{2} c_{q 1+q 2} \\
l_{1} s_{q 1}+l_{2} s_{q 1+q 2}
\end{array}\right] \quad v_{2}(q, \dot{q})=\left[\begin{array}{l}
\dot{x}_{m 2} \\
\dot{y}_{m 2}
\end{array}\right]=\left[\begin{array}{cc}
-l_{1} s_{q 1}-l_{2} s_{q+q 2} & -l_{2} s_{q+q 2} \\
l_{1} c_{q 1}+l_{2} c_{q 1+q 2} & l_{2} c_{q 1+q 2}
\end{array}\right]\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 28/10/2005 }
\end{aligned}
$$

Example: dynamics of 2DOF planar chain (3/4)

- Kinetic energy
$K(q, \dot{q})=\frac{1}{2} \dot{q}^{T}\left[\frac{m_{1} l_{1}^{2}+m_{2} l_{1}^{2}+m_{2} l_{2}^{2}}{m_{2} l_{2}^{2}+m_{2} l_{1} l_{2} c_{q 2}}+2 m_{2} l_{1} l_{2} c_{q 2} m_{2} l_{2}^{2}+m_{2} l_{1} l_{2} c_{q 2}\right] \dot{q}$

$$
=\frac{1}{2} \dot{q}^{T}\left[\begin{array}{cc}
\alpha+2 \beta c_{q 2} & \delta+\beta c_{q 2} \\
\delta+\beta c_{q 2} & \delta
\end{array}\right] \dot{q}=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}
$$

This matrix will turn out to be the inertia matrix

- Dynamics:
No potential energy since we are not considering $\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\tau \quad$ where $\quad L(q, \dot{q})=K(q, \dot{q})$
28/10/2005

Example: dynamics of 2DOF planar chain (4/4)

$$
\left.\begin{array}{l}
\frac{\partial L}{\partial \dot{q}}=\frac{\partial}{\partial \dot{q}}\left[\frac{1}{2} \dot{q}^{T} M(q) \dot{q}\right]=M(q) \dot{q} \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\frac{d}{d t}[M(q) \dot{q}]=M(q) \dot{q}+\frac{d}{d t}[M(q)) \dot{q}=M(q) \ddot{q}+\left[\begin{array}{cc}
-2 \beta s_{q} \dot{q}_{2} & -\beta s_{q 2} \dot{q}_{2} \\
-\beta s_{q 2} q_{2} & 0
\end{array}\right] \dot{q} \\
\frac{\partial L}{\partial q}=\frac{\partial}{\partial q}\left[\frac{1}{2} \dot{q}^{T} M(q) \dot{q}\right]=\left[\begin{array}{cc}
0 & 0 \\
-\beta s_{q q 2} \dot{q}_{1} & -\beta s_{q 2} \dot{q}_{1}
\end{array}\right]\left[\dot{q}_{1}\right. \\
\dot{q}_{2}
\end{array}\right]-1 .
$$

$$
\begin{gathered}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\tau \longmapsto \overbrace{\left[\begin{array}{cc}
\alpha+2 \beta c_{q 2} & \delta+\beta c_{q 2} \\
\delta+\beta c_{q 2} & \delta
\end{array}\right]}^{\ddot{q}+\left[\begin{array}{cc}
-\beta s_{q 2} \dot{q}_{2} & -\beta s_{q 2}\left(\dot{q}_{1}+\dot{q}_{2}\right) \\
\beta s_{q 2} \dot{q}_{1} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]=\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]}
\end{gathered} \overbrace{\begin{array}{l}
\text { Tiven the applied torques the joint trajectories } \\
\text { can be obtained integrating this dynamical } \\
\text { equation! }
\end{array}}^{C(q, \dot{q})} \quad \begin{aligned}
& \begin{array}{l}
\text { Try torify the skew symmetry } \\
\text { of the matrix } \\
\dot{M}(q)-2 C(q, \dot{q})
\end{array} \\
& \hline
\end{aligned}
$$

28/10/2005

State Space form of the dynamic equation

28/10/200

PD control of a kinematic chain

Without loss of generality let us assume $G(q)=0$. If this is not the case let us assume that it has been compensated choosing:

$$
\tau=\hat{\tau}+G(q) \quad \Longrightarrow M(q) \ddot{q}+C(q, \dot{q}) \dot{q}=\hat{\tau}
$$

- FACT: the following PD (proportional + derivative) control law:

$$
\hat{\tau}=-K_{v} \dot{q}-K_{p}\left(q-q_{d}\right)
$$

Is such that the corresponding system has a unique equilibrium point $\left(q_{d}\right)$ which is globally asymptotically stable.

- PROOF: (sketch) try to use the following Lypunov function:

$$
V(q, \dot{q})=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+\frac{1}{2}\left(q-q_{d}\right)^{T} K_{p}\left(q-q_{d}\right)
$$

and take advantage of the passivity property.

```
28/10/2005
```


A trivial solution to the synthesis problem (1/2)

HINT:

$$
\tau_{k}=-K_{v} \dot{q}-K_{p}\left(q-q_{d, k}\right) \quad \begin{aligned}
& \text { convergent to the equilibrium } \\
& \mathrm{q}_{\mathrm{d}, \mathrm{k}}
\end{aligned}
$$

And impose the following for all admissible q_{d} :

$$
\sum_{k=1}^{K} \lambda_{k} \tau_{k}(q, \dot{q})=-K_{v} \dot{q}-K_{p}\left(q-q_{d}\right)
$$

Which can be rewritten

$$
\sum_{k=1}^{K} \lambda_{k}\left[K_{v} \dot{q}+K_{p}\left(q-q_{d, k}\right)\right]=K_{v} \dot{q}+K_{p}\left(q-q_{d}\right)
$$

Which is verified if:

$$
\sum_{k=1}^{K} \lambda_{k}=1 \quad \text { and } \quad \sum_{k=1}^{K} \lambda_{k} q_{d, k}=q_{d}
$$

28/10/2005


```
Back to the end-effector space
    In the redundant case we can go back :
    \(\tau(q, \dot{q})=\sum_{k=1}^{K} \lambda_{k} \tau_{k}(q, \dot{q}) \quad \vec{F}(z, \dot{z})=\sum_{k=1}^{K} \lambda_{k} \vec{F}_{k}(z, \dot{z})\)
    Using the following equations:
```


Interested?

Check out my web page (http://www.dei.unipd.it/~iron)
and have a look at Bizzi Lab web site (http://web.mit.edu/bcs/bizzilab/)

