
1

Robotica Antropomorfa

Francesco Nori

iron@liralab.it
www.dei.unipd.it/~iron

05/04/2007 2

Open Questions

•How do we choose muscle activations so as to obtain  a given joint torque?

•Which is the minimum number of elementary force fie lds that we need to 
perform a ‘complete’ set of movements?

•Is there a way of choosing the primitives to accomm odate different 
kinematic structures?

•How can we predict the trajectory followed by the s ystem when it is driven 
by a given force field F? (Dynamic model of the limb)

•Is there a way of choosing the ‘complete’ set of ele mentary force fields Fk? 
(A trivial solution to the spinal field synthesis p roblem)

•How should we choose joint torques τ so as to obtain a given basis force 
field Fk? (The map τ -> Fk)
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A trivial solution to the synthesis problem (1/2)

HINT:
convergent to the 
equilibrium qd,k
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Which can be rewritten:
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The gain matrix do 
not change with k
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A trivial solution to the synthesis problem (2/2)

Rewriting the previous expression: = 111
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Which has a solution for any qd if and only if the matrix on the left has full 
row rank. This observation gives a criteria to choo se the equilibrium points 
realized by the elementary controls.

Moreover, we can have full row rank only if:

1+≥ nK

1+n

K

This can be proven to be the 
minimum number of 
primitives necessary to 
control a n-DOF kinematic
chain!
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Back to the end-effector space

In the redundant case we can go back and forth:

Using the following equations:

The direct kinematics can be (locally) inverted: 
INVERSE KINEMATIC
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Graphical representation of the fields(2DOF chain)

Can be graphically represented (null 
velocities):

Equilibrium Point

),( qqk &τ

1q

)0,(qkτ

)()0,( ,kdpk qqKq −=τ
EXAMPLE Identity

2q kdq ,

),( zzFk &r
Looks quite different in the 
Cartesian space: )0,(zFk

r =
P

P

y

x
z

Py

Px



2

05/04/2007 7

Trajectory tracking

1q

We have seen how to choose the control action so as  to drive the system 
to a predefined (global) equilibrium. Sometimes we are interested in 
tracking a given trajectory.

2q

)0(dq )(Tqd

dq

Specifically, we are interested in finding a contro l action such that a given 
trajectory is asymptotically tracked i.e. the track ing error:

asymptotically tends to zero.
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COMPUTED TORQUE control of a chain (1/2)

Suppose that you know the matrices M, C, G of the dynamical 
model:

( ) )(),(ˆ)( qGqqqCqqM d +++= &&&& ττ
τ=++ )(),()( qGqqqCqqM &&&& Control Action

System Dynamics

( )τ̂)()( += dqqMqqM &&&&
τ̂+= dqq &&&&

eKeKe pv −−= &&& eKeK pv −−= &τ̂

dqqe −=
Tracking error

We now prove that: 0 → ∞→te

NOTE: M(q) 
is invertible
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COMPUTED TORQUE control of a chain (2/2)

• FACT: If the matrices Kp and Kv are symmetric and positive definite 
then the ‘computed torque’ control law results in exponential 
trajectory tracking i.e. 0 → ∞→te

• PROOF: First observe that the dynamics of e are linear and can be rewritten as 
follows:  −−
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We want to prove that all the eigenvalues of A have negative real part. Let λ be one 
eigenvalue and (v1, v2) be the corresponding eigenvector. Then we have: −−
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Without loss of generality choose v1 with unitary norm so that we have:
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where α>0 and β>0 because Kp and Kv are positive definite. We therefore have:

02 =++ αβλλ 0)Re( <λ
Descartes’s rule
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Decomposition of the control action∑
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The ‘computed torque’ control action can be approximated with the linear 
sum of a finite number of elementary control action s:

( ) )(),()( qGqqqCeKeKqqM pvd ++−−= &&&&&τ
Can be written as follows:

Elementary 
control action

With the following definition:
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And choosing combinators according to the following rules:
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Suitably defined metric in the 
space of trajectories, e.g.: ∫=⋅
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Control action in the task space(1/2)

qqJx && )(=

Consider the following ‘non-redundant’ manipulator:

τ=++ )(),()( qGqqqCqqM &&&&
And let the Jacobian be:

Computations lead to:
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End-effector
position
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Control action in the task space (2/2)

0)(
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)2( qqCqM && − is skew symmetric

Follows from the fact 
that the kinetic energy is ≥ zero and equals zero 
only at rest

(passivity property) It 
implies that in absence of 
friction the total energy of 
the system is conserved

A given matrix A is skew 
symmetric if and only if:

TAA −=

• LEMMA: the matrices of the dynamic model of a kinematic chain 
satisfy the same properties that hold for M and C:
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Control in the task space

PD Control in the task space:

Tracking Control in the task space:

( ) )(
~

),(
~

)(
~

qGqqqCeKeKxqMF pvd ++−−= &&&&& dxxe −=Tracking error

Tracking controller

( )dpv xxKxKqGF −−−= &)(
~

Stabilizing controller
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Modeling the spinal field experiment

Applied 
force

Force 
transducer

Suppose that we choose a given control action:

),( qqk &τ
What would be the force measured by the force trans ducer (even in 
presence of redundancy)? 

NOTE: Remember that the measured force corresponds to the force 
that is needed to keep the end-effector in place!

The end-effector
is kept on place
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Model dynamics in presence of constraints (1/2)

The equation of motion turns out to be:

)(qhx = End effector position

Constraint: keep the 
end effector in place

xqhx == )(

0)( == qqJx &&
),()()(),()( qqFqJqGqqqCqqM kk

T &&&&& τ=+++

The columns of this matrix 
span the normal space to 
the constraint. 

Pfaffian form of 
the constraint

constraint

Externally imposed force 
Fk (to enforce the 
constraint)

Which leads to:

[ ]),()()(),()(1 qqfqJqGqqqCqMq k
T &&&&& τ+−−−= −

That can be used in:
0)()( =+ qqA

dt

d
qqJ &&& Effect of the force on 

joint torques
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Model dynamics in presence of constraints (2/2)
Leading to:

[ ] qqA
dt

d
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or:

( ) ( )  +−−= −−− qA
dt

d
GqCJMJJMF k

T
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And if the chain is non-redundant ( J is invertible):

The force was measured with the 
limb at rest, i.e.:

Therefore the force corresponds to:

( ) k
T

k JMJJMF τ111 −−−=
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Coming back to the force measured in Bizzi’s experim ent:

Interested?

Check out my web page 

(http://www.dei.unipd.it/~iron)

and have a look at Bizzi Lab web site 
(http://web.mit.edu/bcs/bizzilab/)


