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Open Questions

*How can we predict the trajectory followed by the s ystemwhen it is driven
by a given force field F? (Dynamic model of the limb)

«Is there a way of choosing the ‘complete’ set of ele  mentary force fields Fk?
(A trivial solution to the spinal field synthesis p roblem)

«How should we choose jointtorques T so as to obtain a given basis force
field Fk? (The map 7 -> Fk)

*How do we choose muscle activations so as to obtain a given joint torque?

*Which is the minimum number of elementary force fie Ids that we need to
perform a ‘complete’ set of movements?

«Is there a way of choosing the primitives to accomm odate different
kinematic structures?
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A trivial solution to the synthesis problem (1/2)

The gain matrix do
not change with k

I, = _@a_®(q_qd,k)

And impose the following for all admissible (e

HINT:

SAn@d= ~Ka-K,(a-a,)
Which can be rewritten:
K
Z:’lk[qu+ Kp(q_qd,k)]: K.g+ Kp(q_%)
k=1

Which is verified if:

K K
Z/]k =1 and Z/]kqd,k =0y
k=1 k=1
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A trivial solution to the synthesis problem (2/2)

Rewriting the previous expression:

/]1
Aoz " Qux || - Uy

n+1: c | =
1 - 1 1
- /]K
K
Which has a solution for any g, if and only if the matrix on the left has full
row rank. This observation gives a criteria to choo se the equilibrium points
realized by the elementary controls.

Moreover, we can have full row rank only if: This can be proven to be the
/ minimum number of
primitives necessary to
D control a n-DOF kinematic
chain!
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Back to the end-effector space

In the redundant case we can go back and forth:

(DALY e FE)TARED)

Using the following equations:

The direct kinematics can be (locally) inverted:
INVERSE KINEMATIC

z=A@) = 0q=A,(2)

223 = §=3@7z = 4=[0\, @)z

19§ =J3"(qF = F@a)=3"T(7(q.0) =

.= F(22) =37 (A D)T(\(2), (D)D)

Graphical representation of the fields(2DOF chain)
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r.(0,9) F.(z2)

Can be graphically represented (null
velocities): T, (0,

Looks quite different in the
Cartesian space:  F,(2,0)

EXAMPLE Identity
1,(9,0) = (q_QU,k)
WL

-

0,

Equilibrium Point
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Trajectory tracking

We have seen how to choose the control action so as to drive the system
to a predefined (global) equilibrium. Sometimes we are interested in
tracking a given trajectory.

[ Oy

d (O) qd (r)
&

Specifically, we are interested in finding a contro | action such that a given
trajectory is asymptotically tracked i.e. the track ing error:

€=q—dqy

asymptotically tends to zero.

COMPUTED TORQUE control of a chain (1/2)
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Suppose that you know the matrices M, C, G of the dynamical
model:

r=M(q)(d, +7)+C(q,¢)g+G(q)  Control Action
M(@)§+C(q,§)q+G(q) =1 System Dynamics

M (@)§ =M (a)(d, +7)
NOTE: M(q)
is invertible

a=t, 47)
1 e=-ke-Kig
&= -Ke-K,e N
d

We now prove that: €0 T - 0
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COMPUTED TORQUE control of a chain (2/2)

» FACT: If the matrices K, and K, are symmetric and positive definite
then the ‘computed torque’ control law results in exponential
trajectory tracking i.e. e T~ 0

PROOF: First observe that the dynamicsx)f eare linear and can be rewritten as

S I

We want to prove that all the eigenvalues of A have negative real part. Let A be one
eigenvalue and (vy, v,) be the corresponding eigenvector. Then we have:

A Vl — O I Vl — V2
v, | =Ky =K v K Ky,

Without loss of generality choose v; with unitary norm so that we have:

yd :Vl*/‘zvl :Vl‘/‘Vz = —
<.a ~p

where a>0 and B>0 because K;, and K, are positive definite. We therefore have:

XF+pBl+a=0 Rell) <0

Descartes’s rule
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Decomposition of the control action

The ‘computed torque’ control action can be approximated with the linear
sum of a finite number of elementary control action s:

7 =M (9)(d, ~ K&~ K &)+ C(a,4)q+G(q)

Can be written as follows: K
7(0,q) :Z/l @ ——_, Elementary
k=1 control action

With the following definition:
70,60 =M (@)(d" - K,e~K €)+C(a,9)4+ G(q)

And choosing combinators according to the following rules:
K /]l «
E A =1 - i k(=
£ k = =argmin > Aqa (01— g, (
=1 =)

A P

Suitably defined metric in the LT

space of trajectories, .. Jal” = a" ot
o
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Control action in the task space(1/2)

Consider the following ‘non-redundant’ manipulator:

M(a)G+C(a,4)q+G(q) =7 qDR"@D R
~*End-effector
And let the Jacobian be: - Jacobian position

x=h(q) x=3(a)q 4= 37 (g)%
Computations lead to:
M (g)%+C(q,4)x+G(q) = F
where:
M (@) = 37T (@M (@) ™(q)
&6 =37 (q)[C(q)J*(q) M@ J’l(q)}
G(a) =37 (9)G(q)
F=J"(@r
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Control action in the task space (2/2)

* LEMMA: the matrices of the dynamic model of a kinematic chain
satisfy the same properties that hold for M and C:

Follows from the fact
that the kinetic energy is

(1) '\z (q) = M (q)T >0 2 zero and equals zero

only at rest

>

2 M (g) - Zé(q, () s skew symmetric

“«
(passivity property) It . o
implies that in absence of A given matrix Ais sk:_aw
friction the total energy of symmetric if and only if:
the system is conserved A _ AT
05/04/2007 12




Control in the task space

‘ PD Control in the task space: ‘

Stabilizing controller

F =(§(q)—KV)'<—Kp(x—xd)

Tracking Control in the task space: ‘

Tracking error e=X—Xy

Tracking controller ~ F =M (q)(i(d -K.e-K pe)+ C(a,9)q+G(q)
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Modeling the spinal field experiment

Applied
force

Force
transducer The end-effector
is kept on place

Suppose that we choose a given control action:

7.(q.9)

What would be the force measured by the force trans

ducer (even in
presence of redundancy)?

NOTE: Remember that the measured force corresponds

to the force
that is needed to keep the end-effector in place!
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Model dynamics in presence of constraints (1/2)

x=h(q)

End effector position

Constraint: keep the
end effector in place

constraint x=h(q) =x

Pfaffian formof ¢, — o = The columns of this matrix
the constraint X ‘] (q)q 0 span the normal space to

the constraint.

force th
The equation of motion turns out to be: ng,ﬁ;?ngrwl ©
M @i+ Ca, 04 +6(@) +0" @F)=r.(a
) < Effectof the force on
Which leads to:

joint torques

4=M(@[-C(a.93-G(Q) - 3" (@) f +7,(a.0)]
That can be used in: d
J(@)4 +E A(@)g=0

Externally imposed force

05/04/2007 15

Model dynamics in presence of constraints (2/2)

Leading to:

J(@M (@) (@)F, = I(@)M ()7, (a.9) - C(a, q)q—G(q)]%A(q)q

or £ (e JT)—{ M, —cq—G)+[% AM

Coming back to the force measured in Bizzi's experim  ent:

The force was measured with the
limb at rest, i.e.:

4=0 G(@)=0
Therefore the force corresponds to:

Fo=(mm) My,
And if the chain is non-redundant ( Jis invertible):
F = (JT)flrk

And on the horizontal plane:
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Interested?

Check out my web page
(http://www.dei.unipd.it/~iron)

and have alook at Bizzi Lab web site
(http://web.mit.edu/bcs/bizzilab/)




