Robotica Antropomorfa
$\begin{gathered} \text { Francesco Nori } \\ \text { iron@liralab.it } \\ \text { www.dei.unipd.it/iron } \end{gathered}$

Open Questions

-How can we predict the trajectory followed by the system when it is driven
by a given force field F ? (Dynamic model of the limb)
-Is there a way of choosing the 'complete'set of elementary force fields $F k$?
(A trivial solution to the spinal field synthesis problem)
-How should we choose joint torques τ so as to obtain a given basis force
field $F k$? (The map τ-> Fk)

-How do we choose muscle activations so as to obtain a given joint torque?
-Which is the minimumnumber of elementary force fields that we need to
performa 'complete'set of movements?
-Is there a way of choosing the primitives to accommodate different
kinematic structures?
05/11/2008

A trivial solution to the synthesis problem (1/2)

HINT: \quad\begin{tabular}{c}
The gain matrix do \\
not change with k \\
ψ

$\tau_{k}=-K_{y} \dot{q}-K_{p}\left(q-q_{d, k}\right) \quad$

convergent to the \\
equilibrium $\mathrm{q}_{d, k}$
\end{tabular}

And impose the following for all admissible q_{d} :

$$
\sum_{k=1}^{K} \lambda_{k} \tau_{k}(q, \dot{q})=-K_{v} \dot{q}-K_{p}\left(q-q_{d}\right)
$$

Which can be rewritten:

$$
\sum_{k=1}^{K} \lambda_{k}\left[K_{v} \dot{q}+K_{p}\left(q-q_{d, k}\right)\right]=K_{v} \dot{q}+K_{p}\left(q-q_{d}\right)
$$

Which is verified if:
$\sum_{k=1}^{K} \lambda_{k}=1 \quad$ and $\quad \sum_{k=1}^{K} \lambda_{k} q_{d, k}=q_{d}$

A trivial solution to the synthesis problem (2/2)

Rewriting the previous expression:

$$
n+1\{\underbrace{\left[\begin{array}{ccc}
q_{d, 1} & \cdots & q_{d, K} \\
1 & \cdots & 1
\end{array}\right]}_{K}\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{K}
\end{array}\right]=\left[\begin{array}{c}
q_{d} \\
1
\end{array}\right]
$$

Which has a solution for any q_{d} if and only if the matrix on the left has full row rank. This observation gives a criteria to choose the equilibrium points realized by the elementary controls.
Moreover, we can have full row rank only if:

05/11/2008 | This can be proven to be the |
| :--- |
| minimum number of |
| primitives necessary to |
| control n-DOF kinematic |
| chain! |

| Trajectory tracking |
| :--- | :--- |
| We have seen how to choose the control action so as to drive the system
 to a predefined (global) equilibrium. Sometimes we are interested in
 tracking a given trajectory. |
| Specifically, we are interested in finding a control action such that a given
 trajectory is asymptotically tracked i.e. the tracking error:
 $e=q-q_{i}$ |
| asymptoticallytends to zero. |
| 05/11/2008 |

COMPUTED TORQUE control of a chain (2/2)

- FACT: If the matrices K_{p} and K_{v} are symmetric and positive definite then the 'computed torque' control law results in exponential trajectory tracking i.e. $e \xrightarrow{t \rightarrow \infty} 0$
- PROOF: First observe that the dynamics of e are linear and can be rewritten as follows:

$$
\begin{array}{r}
d\left[\begin{array}{c}
e \\
d t \\
e \\
e
\end{array}\right]\left[\begin{array}{cc}
0 & A \\
-K_{p} & -K_{v}
\end{array}\right]\left[\begin{array}{l}
e \\
e \\
e
\end{array}\right], ~
\end{array}
$$

We want to prove that all the eigenvalues of A have negative real part. Let λ be one eigenvalue and $\left(v_{l}, v_{2}\right)$ be the corresponding eigenvector. Then we have

$$
\lambda\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-K_{p} & -K_{v}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
v_{2} \\
-K_{p} v_{1}-K_{v} v_{2}
\end{array}\right.
$$

Without loss of generality choose v_{I} with unitary norm so that we have

$$
\begin{aligned}
& \qquad \lambda^{2}=v_{1}^{*} \lambda^{2} v_{1}=v_{1}^{*} \lambda v_{2}=-v_{1}^{*} K_{p} v_{1}-\lambda v_{1}^{*} K_{v} v_{1} \\
& \text { where } \alpha>0 \text { and } \beta>0 \text { because } K_{p} \text { and } K_{v} \text { are positive definite. We therefore have: }
\end{aligned}
$$

$\lambda^{2}+\beta \lambda+\alpha=0$		$\operatorname{Re}(\lambda)<0$
05/11/2008		9

Decomposition of the control action
The 'computed torque' control action can be approximated with the linear sum of a finite number of elementary control actions:

$$
\tau=M(q)\left(\ddot{q}_{d}-K_{v} \dot{e}-K_{p} e\right)+C(q, \dot{q}) \dot{q}+G(q)
$$

Can be written as follows

$$
\tau(q, \dot{q})=\sum_{k=1}^{K} \lambda_{k} \tau_{k}(q, \dot{q}, t) \longrightarrow \begin{aligned}
& \text { Elementary } \\
& \text { control action }
\end{aligned}
$$

With the following definition:

$$
\tau_{k}(q, \dot{q}, t)=M(q)\left(\ddot{q}_{d}{ }_{d}-K_{v} \dot{e}-K_{p} e\right)+C(q, \dot{q}) \dot{q}+G(q)
$$

And choosing combinators according to the following rules:

$$
\begin{aligned}
& \text { And choosing combinators according to the tollowing rules: } \\
& \qquad \sum_{k=1}^{K} \lambda_{k}=1\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{K}
\end{array}\right]=\lambda=\arg \min _{\lambda}\left\|\sum_{i=1}^{K} \lambda_{k} q^{k}{ }_{d}(\cdot)-q_{d}(\cdot)\right\| \\
& \begin{array}{l}
\text { Suitably defined metric in the } \\
\text { space of trajectories, e.g.: }
\end{array}\|q(\cdot)\|^{2}=\int_{0}^{T} q^{r}(t) q(t) d t \\
& 05 / 11 / 2008
\end{aligned}
$$

Control in the task space
PDControl in the task space: Stabilizing controller $\quad F=\tilde{G}(q)-K_{v} \dot{x}-K_{p}\left(x-x_{d}\right)$ Tracking Control in the task space: Tracking error $\quad e=x-x_{d}$ Tracking controller $\quad F=\tilde{M}(q)\left(\ddot{x}_{d}-K_{v} \dot{e}-K_{p} e\right)+\tilde{C}(q, \dot{q}) \dot{q}+\tilde{G}(q)$ $05 / 11 / 2008$

