Robotica Antropomorfa

Francesco Nori
iron@liralab.it

www.dei.unipd.it/~iron

Open Questions

*How can we predict the trajectoryfollowed by the s ystem whenitis driven
by a given forcefield F? (Dynamic model of the limb)

«Is there a way of choosing the ‘complete’set of el ementaryforce fields Fk?
(Atrivial solution to the spinal field synthesis p roblem)

*How should we choose joint torques 7 so0 as to obtain a given basis force

field Fk? (The map = -> FK)

*How do we choose muscle activations so as to obtain agiven joint torque?

*Which is the minimumnumber of elementaryforce fie Idsthatwe need to
performa ‘complete’ set of movements?

«Is there a way of choosing the primitives to accomm odate different
kinematic structures?

05/11/2008 2

A trivial solution to the synthesis problem (1/2)

The gain matrix do
notchange with k

7 =—@a—@(q—qd,k)

Andimpose the following for all admissible [¢¥

HINT:

é’lkrk(QrQ): -K.,0- Kp(q_qd)

Which can be rewritten:

K
S alkark,fa-a.=kark,la-a)

Which is verified if:

K K
Z/]k =1 and Z/]kqd,k =0q
k=1 k=1
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A trivial solution to the synthesis problem (2/2)

Rewriting the previous expression:

/]1
Aoz = Qux || - Uy

n+1: sl =
— /]K
K
Which has asolutionforany qq if and onlyif the matrix on the left has full
row rank. This observation gives a criteria to choo se the equilibriumpoints
realized by the elementary controls.

Moreover, we can have full row rank onlyif: This canbe proven to be the
minimum number of

primitives necessary to
D control a n-DOF kinematic

chain!
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Back to the end-effector space

In the redundant case we can go back and forth:

(0OTALEY < FEADARE)

Using the following equations:

The directkinematics can be (locally) inverted:
INVERSE KINEMATIC

z=A@q) = d=/N\,(2

223 => §=3@7z = =0\, @)z

7@ =J"(QF = F(a.0)=3T(9r(q,0) = ...
= F(22) =37 (N @)T(N (2. 3(0)2)
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Graphical representation of the fields(2DOF chain)

r,.(a,9) F.(z2)

Can be graphicallyrepresented (null Looks quite different in the
velocities):  T,.(Q, Cartesian space:  F,(2,0)

EXAMPLE Identiy
7,(q,0) =

Equilibrium Point
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Trajectory tracking

We have seen how to choose the control action so as to drive the system
to a predefined (global) equilibrium. Sometimes we are interested in
tracking a given trajectory.

d; dy

d (0) Oy (r)
G

Specifically, we are interested in finding a contro laction such thata given
trajectoryis asymptoticallytrackedi.e. the track ing error:

e=g-q;

asymptoticallytends to zero.
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COMPUTED TORQUE control of a chain (1/2)

Suppose that you know the matrices M, C, G of the dynamical
model:

=M (q)(d, +7)+C(q,§)g+G(q)  Control Action
M(@)G+C(q,q)q+G(aq) =1 System Dynamics

M(a)d =M (a)(t, +7)

NOTE: M(q)
isinvertible

4=q
ﬂ{D F=-K&-K[g
<

é=-Keé-K.e

racking error
d
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We now provethat: € 0@~ 0

COMPUTED TORQUE control of a chain (2/2)

* FACT: If the matrices K, and K, are symmetric and positive definite
then the ‘computed torque’ control law results in exponential
trajectory tracking i.e. el -0

PROOF: First observe that the dynamics of e are linear and can be rewritten as

SN

We want to prove that all the eigenvalues of A have negative real part. Let A be one
eigenvalue and (v;, V) be the corresponding eigenvector. Then we have:

A Vl — O I Vl — V2
v, | 1=Ky =K v T K Ky,

Without loss of generality choose v; with unitary norm so that we have:

1 1 1 2 a \/}

where a>0 and >0 because K, and K, are positive definite. We therefore have:

X+pBr+a=0 Rell) <0

Descartes'srule
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Decomposition of the control action

The ‘computed torque’ control action can be approximated with the linear
sumof a finite number of elementary control action s:

r=M()(d, - K&~ K €]+ C(a,q)q+G(q)

Can be written as follows: K
7(9,6) =X AT, (0,0,t)) ——, Elemenary
=1 control action

With the following definition:
70,6, =M @(d's - K,e~Ke)+C(a.0)q+G(q)

And choosing combinators according to the following rules:
K /]1 «
2A=L |5 =a=argmin zAquu(m—qd(#‘
k=1 k=1

/]K /

Suitably defined metricin the T

space of trajectories, e.g. Hq(r)]f =J'qT (t)g(t)dt
)
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Control action in the task space(1/2)

Consider the following ‘non-redundant’ manipulator:

M () +C(a,6)d+G(q) =7 qURYXOR'
~—End-effector
And letthe Jacobian be: - Jacobian position

x=h(q) x=3(a) CERRIC)

Computations lead to:

M (g)%+C(q,4)x+G(q) = F

where:
M (@) =377 (@M (@) ™(q)
C(ad) =37 (@) C@I*@+M @ J’l(q)}
G(9) =37 (@)G(q)
F=J"(@r
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Control action in the task space (2/2)

* LEMMA: the matrices of the dynamic model of a kinematic chain
satisfy the same properties that hold for M and C:

Follows from the fact
thatthe kinetic energy is

(1) M (q) - M (q)T >0 y 2zeroand equals zero

only atrest

JE—

2 M (g) - Zé(q, ()  isskew symmetric

<
(passivity property) It ) T
implies thatin absence of Agivenmaltrix Ais skew
friction the total energy of symmetricitand only it
the systemis conserved A= AT
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Control in the task space

‘ PD Control in the task space: ‘

Stabilizing controller F= é(q) - Kv)'( -K o (X - Xd)

Tracking Controlin the task space: ‘

Tracking error e=X-Xy

Tracking controller ~ F =M (q)(}(d -K.,e-K pe)+ C(a,6)q+G(q)
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