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Open Questions

•How do we choose muscle activations so as to obtain  a given joint torque?

•Which is the minimum number of elementary force fie lds that we need to 
perform a ‘complete’ set of movements?

•Is there a way of choosing the primitives to accomm odate different 
kinematic structures?

•How can we predict the trajectory followed by the s ystem when it is driven 
by a given force field F? (Dynamic model of the limb)

•Is there a way of choosing the ‘complete’ set of el ementary force fields Fk? 
(A trivial solution to the spinal field synthesis p roblem)

•How should we choose joint torques � so as to obtain a given basis force 
field Fk? (The map � -> Fk)
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A trivial solution to the synthesis problem (1/2)

HINT:
convergent to the 
equilibrium qd,k

( )kdpvk qqKqK ,−−−=
�τ

=
�

=

K

k
kk qq

1

),( �τλ ( )dpv qqKqK −−− �And impose the following for all admissible qd:

( )[ ] ( )dpv

K

k
kdpvk qqKqKqqKqK −+=−+

�
=

��
1

,λ

Which can be rewritten:
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The gain matrix do 
not change with k
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A trivial solution to the synthesis problem (2/2)

Rewriting the previous expression: 	
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Which has a solution for any qd if and only if the matrix on the left has full 
row rank. This observation gives a criteria to choo se the equilibrium points 
realized by the elementary controls.

Moreover, we can have full row rank only if:
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This can be proven to be the 
minimum number of 
primitives necessary to 
control a n-DOF kinematic 
chain!
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Back to the end-effector space

In the redundant case we can go back and forth:

Using the following equations:
The direct kinematics can be (locally) inverted: 

INVERSE KINEMATIC
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Graphical representation of the fields(2DOF chain)

Can be graphically represented (null 
velocities):

Equilibrium Point
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Trajectory tracking

1q

We have seen how to choose the control action so as  to drive the system 
to a predefined (global) equilibrium. Sometimes we are interested in 
tracking a given trajectory.

2q

)0(dq )(Tqd

dq

Specifically, we are interested in finding a contro l action such that a given 
trajectory is asymptotically tracked i.e. the track ing error:

asymptotically tends to zero.
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COMPUTED TORQUE control of a chain (1/2)

Suppose that you know the matrices M, C, G of the dynamical 
model:

( ) )(),(ˆ)( qGqqqCqqM d +++= ++++ ττ
τ=++ )(),()( qGqqqCqqM ,,,, Control Action

System Dynamics

( )τ̂)()( += dqqMqqM ----
τ̂+= dqq ....

eKeKe pv −−= /// eKeK pv −−= 0τ̂

dqqe −=
Tracking error

We now prove that: 0 → ∞→te

NOTE: M(q) 
is invertible
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COMPUTED TORQUE control of a chain (2/2)

• FACT: If the matrices Kp and Kv are symmetric and positive definite 
then the ‘computed torque’ control law results in exponential 
trajectory tracking i.e. 0 → ∞→te

• PROOF: First observe that the dynamics of e are linear and can be rewritten as 
follows: 123456123456 −−

=

123456
e

e

KK

I

e

e

dt

d

vp 77 0
A

We want to prove that all the eigenvalues of A have negative real part. Let 8 be one 
eigenvalue and (v1, v2) be the corresponding eigenvector. Then we have:9:;<=> −−
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Without loss of generality choose v1 with unitary norm so that we have:
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where ?>0 and @>0 because Kp and Kv are positive definite. We therefore have:
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Decomposition of the control actionA
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The ‘computed torque’ control action can be approximated with the linear 
sum of a finite number of elementary control action s:

( ) )(),()( qGqqqCeKeKqqM pvd ++−−= CCCCCτ
Can be written as follows:

Elementary 
control action

With the following definition:
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Suitably defined metric in the 
space of trajectories, e.g.: N=⋅
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Control action in the task space(1/2)

qqJx OO )(=

Consider the following ‘non-redundant’ manipulator:
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And let the Jacobian be:

Computations lead to:
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End-effector 
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Control action in the task space (2/2)
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)2( qqCqM ZZ − is skew symmetric

Follows from the fact 
that the kinetic energy is [
 zero and equals zero 

only at rest

(passivity property) It 
implies that in absence of 
friction the total energy of 
the system is conserved

A given matrix A is skew 
symmetric if and only if:

TAA −=

• LEMMA: the matrices of the dynamic model of a kinematic chain 
satisfy the same properties that hold for M and C:
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Control in the task space

PD Control in the task space:

Tracking Control in the task space:
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Tracking controller
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Stabilizing controller


