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Abstract: Environment mapping is a very complex

procedure that requires high CPU performance. For

the last few years, laser scanners have become more

and more important for mobile robots. Using their

data requires many transformations between di�erent

coordinate systems. This new approach deals with a

mapping within the coordinate system of the scanner,

therefore it is very fast. The Log-Hough Transforma-

tion performs line �nding in scans in a very e�cient

way, which speeds up mapping.

1 Introduction

Mobile robot navigation depends on the knowledge of

the environment. Therefore nearly all robots run a

mapping task to generate or improve their maps. For

map representation, usually the Cartesian coordinate

system is preferred because it allows the representation

of environment features independent from the robot's

position. If mapping is done in an indoor environment

(which is assumed for this article), the features them-

selves are most often represented by line segments.

In the last few years, very fast and precise laser scan-

ners have become the most important sensor for mobile

robots for all navigation tasks, such as collision avoid-

ance, position correction and mapping. The last two

problems have to be solved in the Cartesian coordinate

system of the environment. This requires a powerful

computer, since the data of the scanner is given in po-

lar coordinates and each scan has to be transformed.

Present solutions transform every single point of the

scan and then extract the edges. The new approach

presented in this paper deals with edge extraction in

the egocentric polar coordinate system of the laser

scanner. Therefore only the detected edges have to

be transformed, which saves a lot of CPU power.

2 Conventional line detecton

The main problem of navigation based on laser scanner

data is to connect the single points obtained from the

scanner to edges suitable for use by the robot. Figure 1

shows such a scan.

Several algorithms exist to extract edges from point

data which has been transformed into the Cartesian

system.

Line tracking. This algorithm, as described in [8],

successively processes all points from the scanned set,

generating a line equation. This equation is iteratively

improved as points are found to lie on the postulated

line. The measurement error of a point respective to

the line is computed using a least squares method.

Then it is tested against a certain threshold to �nd

out if the currently examined point lies on the line.

When the error is greater than the threshold, the line

is terminated at that point, and a new line is started.

Figure 1: Single laser scan

Iterative endpoint�t. A line is generated connect-

ing the �rst and last point of the set of points. The

point with the greatest orthogonal distance towards

the line is determined. If the distance is larger than a

threshold, the line is split in two, connecting the end-



points of the previous line with the newly found point.

The set,too, is split in half at the point's position. This

yields two sets and two lines connecting the respective

�rst and last points of the sets. Then the algorithm

is recursively applied to those two set-line pairs. This

method is also described in [8] and [6].

3 Progressive line detecting

The transformation from the polar into the Cartesian

coordinate system can be avoided using an algorithm

that does not change the type of the coordinate sys-

tem.

3.1 The Hough Transformation

This method was proposed in 1962 by

Paul V.C. Hough[4] to automatically detect the

complex tracks of subatomical particles in pho-

tographs obtained from a bubble chamber. The basic

idea is to transform a single point into the parameter

space of the set of in�nite lines running through it.

This parameter space is called Hough space.

In the basic form presented here, the Hough trans-

formation detects straight lines only. But as pointed

out in [7], the approach can be generalized to detect

arbitrary picture elements. The Hough transform has

been used for automatic mapping and robot localiza-

tion in a number of projects, such as [2] (to detect

edges in occupancy grids obtained from ultrasonic sen-

sor output) and [5] (using a range-weighted variant for

laser scanner based localization).

In the scanner-centered polar coordinate system of

a laser scan, a line is given by the function

d(�) =
r

cos(�� �)
(1)

where r is the length of the orthogonal from the co-

ordinate system's origin to the line, and � is its incli-

nation (see �gure 2). The parameter pair (r; �) yields

a single point in Hough space.

Examining a single point (d1; �1) from the laser

scan, the parameter function for all lines passing

through this point can be found by solving equation 1

for r. This yields

r(�) = d1 cos(�1 � �) (2)

for variable �. Equation 2 is called the Hough Trans-

formation of a single point. Thus, the Hough Trans-

formation of a line is a point, and the one of a point

is a cosine curve.

Setting up the line parameter equation for a second

point (d2; �2), an angle �0 can be detected with

r(�0) = d1 cos(�1 � �0) = d2 cos(�2 � �0) (3)

The pair (r(�0); �0) is the parameter pair that spec-

i�es the straight line through (d1; �1) and (d2; �2). Its

αd( )

α

φ

r

Figure 2: A line in polar coordinates with the specify-

ing parameters

corresponding point in Hough space can be found by

plotting the scaled cosine curves (obtained from equa-

tion 2 for (d1; �1) and (d2; �2)) and determining their

intersection. Note that the second intersection point

(r(�0+�); �0+�) can be ignored because it yields the

same line equation. See �gures 3 to 5 for an illustra-

tion.
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Figure 3: The points p1 = (d1; �1) and p2 = (d2; �2)

Using this method, the equation for the line con-

necting an arbitrary number of collinear points can be

found by transforming all the points into Hough space

and determining the positive intersecting point of the

resulting cosine curves. If the intersection search is

limited to detect only the intersecting points of more

than a certain number of curves, the Hough transform

becomes very tolerant with respect to noise.

Unfortunately, in implementation, the Hough trans-

form is not only robust and noise-tolerant but also

fairly expensive in terms of memory and CPU time.

The reason for the memory disadvantage arises from

the fact that the Hough space has to be discretized in

order to facilitate intersection search. The reason for

CPU time consumption lies in the need to re-compute

the cosine curve from equation 2 for every single point.
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Figure 4: The parameters of the line sets through p1
and p2
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Figure 5: The representation of the parameter func-

tions r1(�) and r2(�) in Hough space

3.2 The Log-Hough Transformation

The Log-Hough transformation as proposed by

Weiman [11] is a modi�cation of the Hough method.

It greatly reduces both the amount of memory and the

complexity of calculations required. This is achieved

by performing all calculations not in a regular polar

coordinate system but its logarithmized variant. Ad-

ditionally, the used system is special in terms of be-

ing isotropical, i.e. the scale is equal to both axes.

The demand for isotropy stems from the origins of

the method: It was originally developed for process-

ing data obtained from cameras with exponentially ar-

ranged CCD cells (see [10]), where such a coordinate

system facilitates picture zoom and rotation simply by

index shift.

The scale of the � axis is given by the angular res-

olution of the scanner. Therefore the transformation

is chosen such that the scale of the r axis is rendered

appropriately. This is done by dividing the distance d

by the inner measurement limit r0, yielding equation

4 for the transformation into the log-polar coordinate

system and equation 5 for the backwards transforma-

tion.

Note: For the purpose of the experiments con-

ducted, the natural logarithm is used, so the expo-

nentiation in the backwards transformation is written

as ex. In practice, however, any base can be used.

dlog = log(
d� r0

r0
) (4)

d = r0e
dlog + r0 (5)

The application of this transformation changes the

straight-line parameter equation 2 to

rlog(�) = log(
r(�)

r0
)

= log(d)� log(r0) + log(cos(�� �)) (6)

From this equation, it can easily be seen that the

point values d and � now only act as shifting param-

eters for the curve; the general shape stays the same,

namely that of a logarithmized cosine curve. There-

fore the implementation only needs to compute and

discretize the curve exactly once. This prefabricated

curve is deposited in a look-up table which is then plot-

ted into Log-Hough space for each scan point, shifted

by the point's parameters.

After transforming an entire scan, the intersection

points are found in Log-Hough space. For each inter-

section, the angular parameter � of the resulting line

equation can be derived directly from the intersection's

� coordinate. The distance parameter r is obtained by

transforming the rlog coordinate using equation 5.

In implementation (i.e. in a discretized grid with k

cells in radial direction), the logarithmic distance coor-

dinate is expressed as dlog = n� where � is the angular

resolution of the scanner and n is the cell number that

contains the detected intersection.

It remains to be noted that the linear discretization

of Log-Hough space results in an exponentially prolif-

erated discretization of real space. Therefore, accuracy

decreases from the center ring (distance r0 from the

scanner) outward. However, since the area of greatest

interest is about 2m in front of the robot, this is not a

great disadvantage, especially when compared to the

rate of data reduction that results from the logarith-

mized as opposed to the standard Hough transform.

For an example, see section 5.3.

3.3 Termination

After all in�nite lines existent in the scan have been ex-

tracted, their respective start and end points are found

by again iterating over the entire scan and testing the

distance of each point to each line against a threshold.

3.4 Uncertainty computation

To determine the uncertainty of the edge segments'

properties, �rst the covariance matrix for the point



(r; �) has to be determined. Unfortunately, this is not

trivial. Linear regression in the polar coordinate sys-

tem is unsatisfactory due to the non-linear relationship

of the parameters, and the transformation of all gen-

erating points of a segment into the Cartesian system

would remove all the bene�ts gained by the Log-Hough

transform.

Instead, a simple approximation is used: The Log-

Hough algorithm can be viewed as �nding clusters in

(�d; ��)-space with

�d = d�
r

cos(�� �)
and (7)

�� = �� �+ arccos(
r

d
): (8)

Now the variances of r and � can be set equal to the

variances of d and � as determined by

�2
r

=
1

n

nX
i=1

(di �
r

cos(�i � �)
� �d)

2 (9)

�2
�

=
1

n

nX
i=1

(�i � arccos(
r

di
) + �� ��)

2 (10)

where �d =
1
n

P
n

i=1 di and �� = 1
n

P
n

i=1 �i. Then the

covariance matrix of the point (r; �) can be set to

�(r;�) =

�
�2
r

0

0 �2
�

�
(11)

This is a very rough estimate that has been chosen

purely for performance reasons, but it performs well

in practice.

A di�erent approach would be to calculate the prop-

agation of the single points' covariances to the co-

variances of each of the generated parameter points.

Then, instead of discrete Log-Hough lines with height

1, lines made up of the approximated Gaussian co-

variance curves would be plotted. This would make

it possible to obtain the uncertainties of the extracted

lines directly from Log-Hough space. We are currently

investigating this approach to �nd an e�cient way to

implement it.

After the variances of (r; �) have been found, the

point and the line's normal vector are converted into

the Cartesian system and their covariance matrices are

found. This information is used to parameterize the

edge segment with start and end points, mid point and

normal vector.

4 Mapping

Mapping is done in a Cartesian coordinate system with

(0; 0) at the point where the robot was located when

the mapping process was started. Matching of already-

modeled edges with those from a laser scan is done us-

ing the Mahalanobis distance[8], taking the edge fea-

tures' covariances into account.

After an edge from the world model has been suc-

cessfully matched with the corresponding edge from

a new laser scan, the modeled edge is re�ned using a

discrete-time Kalman �lter[9]. Another Kalman �lter

is used to reduce the uncertainty in the robot's own

dead-reckoning-based position estimation.

The resulting mapping algorithm produces a reliable

model of a static environment. Methods for reaction

to dynamic environments have not been integrated yet,

but are subject to investigation.

5 Experimental results

This algorithm was tested with two di�erent types of

laser scanners. After a short description of the scanner

hardware, an example is presented.

5.1 The scanner

Figure 6 shows the used scanner models. On the left

hand side, the Sick PLS can be seen. This scanner per-

forms a time-of-
ight measurement with an accuracy

of 5.1cm at a distance of up to 2m and 13.1cm beyond

that.

Figure 6: The scanners from Sick and TRC

The other scanner shown is the HelpMate Light-

Ranger. This unit is �tted with a laser emit-

ting/detecting device from Acuity Research [1], which

emits a square wave whose pulse width is modulated

by the time of 
ight of the laser beam de
ected from

a rotating mirror. This square wave is sampled by

an evaluating unit, transforming the pulse width into

range readings.

Accuracy evaluations have shown the LightRanger's

range output to have an accuracy of about 6.7cm re-

gardless of distance to the measured object.

5.2 Edge extraction using the Log-

Hough Transform

In this section, a short demonstration will be given

on the results obtained using the Log-Hough Trans-

formation. On the left side of �gure 7, the state of the



Log-Hough grid after transforming all the points from

�gure 1 is depicted.

Figure 7: The Log-Hough space and its line maxima

for �gure 1

The right side of �gure 7 shows the maxima of the

discretized Log-Hough space's lines; this plot could be

described as a \side view" of Log-Hough space. First,

the peak-searching algorithm looks for peaks in this

one-dimensional grid to determine the angular position

of the respective peak. Then it �nds the radial position

by using the same one-dimensional maximum search

on the corresponding line of Log-Hough space.

Finally, after the peaks have been determined and

the corresponding lines have been terminated, the edge

segments are transformed into a Cartesian coordinate

system. This yields the edge segments shown in �g-

ure 8.

5.3 Data reduction

To see the factor of data reduction that arises from us-

ing the Log-Hough algorithm as opposed to the stan-

dard Hough transform, an example shall be given using

some standard parameters.

Memory reduction. It is assumed that the area of

interest stretches from r0 = 50cm to r1 = 1; 000cm

or 10m in radial direction and encompasses 360� of

angular �eld of view. The angular resolution of the

laser scanner be � = 1=2�. Discretization of this area

with a minimum accuracy of 1cm in standard Hough

Figure 8: Edge segments extracted from �gure 1 using

the Log-Hough transformation.

space requires a grid of

(1; 000� 50) �
360
1
2

= 684; 000 (12)

memory cells. If a cell size of a single byte is used, this

grid is prohibitively large for many embedded systems.

Examining the grid required for a Log-Hough trans-

formation with the same parameters, it can be found

from the discretized form of equation 5 that

r1 � r0

r0
=

950

50
= ek�

1

2

�

: (13)

Therefore the number of rings is k = dlog(19)=0:5�e =

338 if the natural logarithm is used. Multiplied with

the number of angular wedges, this yields a grid size

of

338 �
360
1
2

= 243; 360 (14)

memory cells, or a data reduction of almost the factor

3.

The resolution of this Log-Hough grid computes to

�d0 = e2� � e� = 0:0088m (15)

or about 9mm in the innermost and

�d1 = e338� � e337� = 0:1659m (16)

or about 16.6cm in the outermost ring. So the mini-

mum resolution has been retained close to the sensor,

and in 10m distance the resolution is about 1.3 times

the variance of the PLS at that range, or 2.5 times the

variance of the LightRanger.



Calculation reduction. Compared to the

commonly-used algorithms to extract edges, the

Log-Hough transform saves CPU power as well.

The e�ort of the line tracking algorithm is O(n).

It is slowed down, however, by the transformation of

the laser scanner data into the Cartesian coordinate

system. The least squares method is very expensive

also.

The iterative endpoint �t has the e�ort O(n logn),

and it also requires a coordinate transformation.

The Log-Hough method as presented in this paper

is an algorithmwith e�ort O(n), but without any com-

plex coordinate transformations, making it the fastest

algorithm available for the extraction of edges from

laser scanner data.

6 Conclusion and future work

This new approach speeds up edge extraction signi�-

cantly, especially since it is apt for realization in hard-

ware due to the lack of complex transformations re-

quired. It is therefore ideal for automated mapping

and position correction. Currently only 2D-mapping

is realized.

For the future, it is planned to integrate some kind

of three-dimensional sensor into the system, extend-

ing the Log-Hough method to fully encompass three-

dimensional space. The sensor used for this will prob-

ably be a Dornier EBK laser scanner.

Another �eld of interest with this algorithm will be

position correction. This can be achieved quite easily

by detecting principal peaks in Log-Hough space and

tracking their o�set over several scans.
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