
Neighborhood operations

 
m n

nmhnjmifhfjig),(),(),(

//example: for a 3x3 kernel
for r=1:H

for c=1:W
// for each feasible points in the image

temp=0.0;
for m=-1:1

for n=-1:1
temp=temp+f(r-m,c-n)*h(m,n);

end
end

g(r,c)=temp;
end

end

• Generate an output pixel on the basis of the pixel and its neighbors
• Often involve the convolution of an image with a filter kernel or mask

computational cost, order of
mxnxWxH for an image WxH

D. Vernon; Machine Vision : Automated Visual Inspection and Robot Vision, Prentice Hall, 1991

Esample: noise suppression
• Assuming (usually correctly) that the

noise has a high spatial frequency
• Apply a low-pass spatial filter
• Of course high-frequencies in the

image will be degraded after
filtering…

9/1*1359/1*1349/1*134
9/1*1209/1*1409/1*110

9/1*1039/1*1009/1*101






Gaussian smoothing
• The image is convolved with a Gaussian function

 

gaussian broad large
gaussian narrow small

function theof spread thedefines
2

1),(
222 2/

2




 







yxeyxG

from: http://www.cee.hw.ac.uk/hipr/html/gsmooth.html

Why smooth with a Gaussian? (1)

• The Gaussian filter has nice properties in the frequency
domain:

Beware of aliasing…

Why smooth with a Gaussian? (2)

• Convolving a Guassian with a Gaussian, gives a
Gaussian:

• it is possible to obtain heavily smoothed images
by resmoothing smoothed images…

2 21 2 1 2
G G G   

 

Why smooth with a Gaussian? (3)

• Filtering with a 2D Gaussian can be separated in two
convolutions with one dimensional Gaussian function:

2 2 2 2

2 2 22 2 2
2

1 1 1
2 2 2

x y x y

G e e e  
   


  

  

Why smooth with a Gaussian? (3)

• Filtering with a 2D Gaussian can be separated in two
convolutions with one dimensional Gaussian function:

2 2 2 2

2 2 22 2 2
2

1 1 1
2 2 2

x y x y

G e e e  
   


  

  

2 2

22

(,) (,) (,)

(,)

m n

m n

m n

g i j f g g m n f i m j n

e f i m j n




     

   

 

 

2 2

2 2

2

2

2 2

2

(,)

(,)

m n

m n

m

m

e e f i m j n

e h i m j

 



 



   

 

 


convolve with a vertical 1D Gaussian

convolve the result with an horizontal 1D Gaussian

• Convolving with a separable filter is the same as convolving
with two 1D kernels, but faster:

nxHxW + mxHxW operations, instead of nxmxHxW

Example
• Above: images corrupted by normally distributed additive noise (std

5,10,15,20)
• Below: smoothing with a gaussian filter 10x10 std=3

Median Filter
• Non linear technique, useful for noise supression
• In one dimension:

– slide a window of an odd number of pixel
– replace the center pixel with the median within the window

• The median of a discrete sequence of N (odd) elements is the number so
that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements
are larger or equal in value
– In practice: sort the pixels and pick the value in the middle…

Median Filter
• Non linear technique, useful for noise supression
• In one dimension:

– slide a window of an odd number of pixel
– replace the center pixel with the median within the window

• The median of a discrete sequence of N (odd) elements is the number so
that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements
are larger or equal in value
– In practice: sort the pixels and pick the value in the middle…

W.K.Pratt, Digital Image Processing

Edge detection
• It is an example of feature extraction
• Edges correspond to abrupt changes of luminous intensity in the image
• They usually correspond to discontinuities in the visual scene, due to

illumination, object surface or material  object boundaries
• Estimate the gradient of the image:
















y
f

x
fyxf ,),(

• The rate of change of the image is maximum along the direction:

• With magnitude:















x
f

y
farctan

22

),(





















y
f

x
fyxgf

• Simplest way to estimate the derivatives:

),()1,(),,(),1(yxfyxf
y
fyxfyxf

x
f









• Another approach (Roberts) compute the derivatives diagonally over a 2x2
region:

   2 2(,) (,) (1, 1) (,) (1,) (, 1)g x y R x y f x y f x y f x y f x y        

• First differences are sensitive to noise, a better approach is to combine
differencing with local averaging. For example Sobel operator:

 
 )1,1()1,(2)1,1(

)1,1()1,(2)1,1(





yxfyxfyxf

yxfyxfyxfSy

 
 )1,1(),1(2)1,1(

)1,1(),1(2)1,1(



yxfyxfyxf

yxfyxfyxfSx

Takes the difference of a
weighted average of the
image intensity of either
sides of f(x,y)

yx

yx

SSyxgor

SSyxg





),(:

),(22

Edge operators can be represented as
convolution kernels:
a) Roberts
b) Prewitt
c) Sobel

If S is Gaussian then the kernel is a
derivative of a G

• Once the gradient magnitude has been estimated, decide if an edge
is present or not based on a threshold:



 


 otherwise 1

),(if 0
),(

tyxg
yxedge

original image (rice.tif) Roberts (th=0.13) Prewitt (th=0.09) Sobel (th=0.09)

I = imread('rice.tif');
eRob= edge(I, ‘roberts’);
ePre = edge(I,'prewitt');
eSob = edge(I,‘sobel');
figure(1), imshow(eRob)
figure(2), imshow(ePre)
figure(3), imshow(eSob)

• Alternative method, computes the Laplacian:

• Approximation:
1d: f’(x+1)=f(x+1)-f(x), f’(x)=f(x)-f(x-1)  f’’(x)=f’(x+1)-f’(x)
2d: convolve with kernels:

• Zero response to linear ramps (gradual changes in intensity), respond to
either sides of edges (+/-)  detect edges as zero crossing

• Drawback  strong response to noise
• First convolve with a Gaussian (Marr and Hildreth)

Laplacian
















 2

2

2

2
2),(

y
f

x
fyxf

0 -1 0
-1 4 -1
0 -1 0

-1 -1 -1
-1 8 -1
-1 -1 -1

or

f(x)

f’(x)

f’’(x)

• The Laplacian operator has some nice properties (and is a linear kernel):

 ),(),(),(),(22 yxIyxGyxIyxG 

),(2 yxG is also called LoG (Laplacian of Gaussian)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

Discrete approximation of a LoG (std=1.4)

• To recap the Laplacian is:
zero distant from the edge
> 0 just before the edge
zero in between the edge
< 0 after the edge

f(x)

f’(x)

f’’(x)

More on the LoG (useful things to know)

• The two dimensional convolution can be separated into four one-
dimensional convolution (cost efficiency):

• The LoG can be approximated as (again, easy to compute):

 
2 2

2
2 2(,) (,) () (,) () () (,) ()I x y G x y G x I x y G y G y I x y G x
y x

    
              

 ),(),(),(),(),(),(
212121 yxfDoGyxfGGyxfGyxfGyxgyxg  

0 5 10 15 20 25 30 35 40 45 50
-0.04

-0.02

0

0.02

0.04

0.06

0.08

1
2

21  

Canny Edge Detector (1986)
• Problem of the edge detectors: produce thick edges, sometimes edges are not

connected because of noise

• Smooth with a Gaussian, then apply Sobel
• Thin edges, non-maxima suppression:

Edge is found if
a) response exceeds a given threshold and
b) it is not dominated by responses at neighboring points in a direction normal to the
candidate edge  the edge must be higher than the edge magnitude of the pixels on
either side

f(x)

f’(x)

Canny Edge (2)
• Extends weak edges: Hysteresis controlled by two thresholds T1 > T2; all pixels

above T1 are marked as edge; then all pixels connected to these edges whose
value is above T2 will be selected as edge (avoid ‘dashed edges’)

original image (rice.tif) Sobel (th=0.09) Canny

