Neighborhood operations

« Generate an output pixel on the basis of the pixel and its neighbors
« Often involve the convolution of an image with a filter kernel or mask

Input image £/, j)

Filter him, n})

g@i, j)=f+h=>> f(i—-m, j—n)h(m,n)

101 100 103
110 | 140 | 120 ff - llexample: for a 3x3 kernel
for r=1:H
134 | 134 | 135 for c=1:W
I/ for each feasible points in the image
132 132 132
temp=0.0;
134 | 140 | 140 for m=-1:1
for n=-1:1
130 | 138 | 139 | 160 | 169 | 175 | 170 | 165 g“:ﬂ__ Li, Fliem j—n) him. ) temp=temp+f(r-m,c-n)*h(m,n);
m.n 1 end
126 133 138 149 163 169 180 185 end
130 140 150 169 178 185 180 200 g(r,c)=temp;
end
end .
computational cost, order of

mxnxWxH for an image WxH

Figure 4.9. Convolution.

D. Vernon; Machine Vision : Automated Visual Inspection and Robot Vision, Prentice Hall, 1991



Esample: noise suppression

1/9 1/9 1/9

Assuming (usually correctly) that the
noise has a high spatial frequency e | e | 1o

Apply a low-pass spatial filter

Of course high-frequencies in the
image will be degraded after

1/9 1/9 1/9

Figure 4.11 Local average mask.

filtering... Rel I B T 103 | 110

107 105
1/9 1/9 1/9

1710 | 140 | 120
N e * 122 | 130 | 130 | 121 | 120
| 19 1/9

101*1/9+100*1/9+103*1/9 / ' 134 ' 131 | 137 | 138 | 120 | 121

1/9 1/9 1/9
+110*1/9+140*1/9+120*1/9
+134*1/9+134*1/9+135*1/9

132 132 132 133 133 150 160 155

134 140 140 135 140 156 160 174

130 138 139 150 169 175 170 165

126 133 138 149 163 169 180 185

130 140 150 169 178 185 190 200




G(x,y) =

2o

o defines the spread of the function
small & — narrow gaussian

e

2

Gaussian smoothing

 The image is convolved with a Gaussian function

—(x2+y2 )/2(72

large o — broad gaussian

1 4 | 7| 4
4 | 16| 26| 16
1
P 7 | 26| 41| 26
273
4 | 16| 26| 16
1 4 | 7| 4

0.2,

0.15 -

G(X.Y)

0.05

0.1

from: http://www.cee.hw.ac.uk/hipr/html/gsmooth.html



Why smooth with a Gaussian? (1)

The Gaussian filter has nice properties in the frequency
domain:

Frequency Response a1 Box Filter

Frequency Respanse a1 Gaussian Filter

1 1

0.8 a8t
208 208}
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o Q
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0.2 ///,~ 0.2

a . : a . . :
a a.1 0.2 0.3 0.4 0.5 a a.1 02 03 0.4 0.5

K|aatal Frannaney K|aallal Franiianeny

T(rect(ax)) = %. sinc (g) T(e“"xz) _ \/g_ e_@

Beware of aliasing...



Why smooth with a Gaussian? (2)

« Convolving a Guassian with a Gaussian, gives a
Gaussian:

% o ol +0%

 |tIs possible to obtain heavily smoothed images
by resmoothing smoothed images...



Why smooth with a Gaussian? (3)

 Filtering with a 2D Gaussian can be separated in two
convolutions with one dimensional Gaussian function:




Why smooth with a Gaussian? (3)

 Filtering with a 2D Gaussian can be separated in two
convolutions with one dimensional Gaussian function:

g(i,j)=f*g=2 > g(mn)f(i-m, j-n)=

m? +n?

:;Zne 20" f(i—m,j-n)=
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—~ convolve with a vertical 1D Gaussian

convolve the result with an horizontal 1D Gaussian

« Convolving with a separable filter is the same as convolving
with two 1D kernels, but faster:

nXHxXW + mxHXW operations, instead of nxmxHxW



Example

Above: images corrupted by normally distributed additive noise (std
5,10,15,20)

Below: smoothing with a gaussian filter 10x10 std=3




Median Filter

* Non linear technique, useful for noise supression
* In one dimension:
— slide a window of an odd number of pixel
— replace the center pixel with the median within the window

 The median of a discrete sequence of N (odd) elements is the number so
that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements
are larger or equal in value

— In practice: sort the pixels and pick the value in the middle...

123 |1 125 | 126 | 130 | 140

Neighbourhood values:
122 | 124 | 126 | 127 | 135

- 115, 119,120, 123, 124,
118 | 120 | 150 | 125 | 134 125,126,127, 150

119 | 115 | 119 | 123 | 133

Median value: 124
111 (116 | 110 | 120 | 130




Median Filter

* Non linear technique, useful for noise supression
* In one dimension:
— slide a window of an odd number of pixel
— replace the center pixel with the median within the window

 The median of a discrete sequence of N (odd) elements is the number so
that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements
are larger or equal in value

— In practice: sort the pixels and pick the value in the middle...

123 |1 125 | 126 | 130 | 140

Neighbourhood values: el Bl I
122 | 124 | 126 | 127 | 135
115, 119, 120, 123, 124, I Bl Bl Ml el Bl B8
118 | 120 | 150 | 125 | 134 125,126,127, 150

118 |1 120 }» 125 | 134

119 | 115 | 119 | 123 | 133

. 119 1115 | 119 ]| 123 ] 133
Median valu

111 | 116 | 110 | 120 | 130 111 (116 | 110 | 120 | 130




ORIGINAL MEAN FILTERED

L1 L]

MEDIAN FILTERED

[ 1]

(a) STEP

|l|| |l||

(b) RAMP

o by LT TTL

{c) SINGLE PULSE

ooy LT

(b)

(d) DOUBLE PULSE

|

L 1

PULSE

L1

]

|1y

(f) TRIANGLE

FIGURE 12.6-1. Examples of median filtering on primitive signals, L =5.

(c) ' (d)
FIGURE 12.6-3. Examples of one-dimensional median filtering for images corrupted
by impulse noise. (a) Image with impulse noise, 15 errors per line. (b) Median filtering
of (a) with L =3. (c) Median filtering of (a) with L =5. (d) Median filtering of (a) with

W.K.Pratt, Digital Image Processing



Edge detection

« Itis an example of feature extraction
« Edges correspond to abrupt changes of luminous intensity in the image

« They usually correspond to discontinuities in the visual scene, due to
illumination, object surface or material = object boundaries

« Estimate the gradient of the image:

of of

* The rate of change of the image is maximum along the direction:

9= arctan(éf / 81:)
oy/ oOX
of V¥ (of \
Wf‘: g(x,y) _\/(c’ﬂxj ﬂ{gj

* With magnitude:




Simplest way to estimate the derivatives:

of of
o L= 00y, =y +D) = xy)

Another approach (Roberts) compute the derivatives diagonally over a 2x2
region:

g(x, y) = R(X, Y) :\/[ F(x+Ly+1) - FO )] +[F(x+Ly) = F(x y+D)]

First differences are sensitive to noise, a better approach is to combine
differencing with local averaging. For example Sobel operator:

Sy =[fx-Ly+D+2f (6 y+D+ F(x+Ly+D) Takes the difference of a
~[fOx-Ly-D+2f(xy-D+f(x+1Ly-)] —— weighted average of the

image intensity of either

S, =[f(x+Ly-D+2f(x+Ly)+ f (x+1y+1)] sides of f(x,y)

~[fx=Ly-D+2f(x-1y)+ f(x=1,y+1)]

g(X, y) zJSf—l—Sj

or:g(x,y) =\SX\+‘Sy‘



(a)

(b)

(c)

Edge operators can be represented as
convolution kernels:

a) Roberts
b) Prewitt
c) Sobel
al K
K«
ox
a(S=1) (K% S)+ 1
pt % %k
0x X
a(S=1) 0aSs
— o |
0x dx

If S is Gaussian then the kernel is a
derivative of a G



* Once the gradient magnitude has been estimated, decide if an edge
IS present or not based on a threshold:

0 if g(x,y) <t
1 otherwise

edge(x, y) ={

original image (rice.tif) Roberts (th=0.13) Prewitt (th=0.09) Sobel (th=0.09)

| = imread(‘rice.tif');
eRob= edge(l, ‘roberts’);
ePre = edge(l,'prewitt);
eSob = edge(l,'sobel’);
figure(1), imshow(eRob)
figure(2), imshow(ePre)
figure(3), imshow(eSob)



Laplacian

Alternative method, computes the Laplacian:

o’f o°f
+
aXZ 8y2

sz(X,Y){

Approximation:
1d: f'(x+1)=f(x+1)-f(x), f'(xX)=f(x)-f(x-1) =2 f’(X)=F(x+1)-f'(X)
2d: convolve with kernels:

o|-1]0 1111
1l 4]-1] o |[1]8]-1
o|-1]0 1)1 -1

Zero response to linear ramps (gradual changes in intensity), respond to
either sides of edges (+/-) - detect edges as zero crossing

Drawback - strong response to noise
First convolve with a Gaussian (Marr and Hildreth)

f(x)

£(x)

£(x)



The Laplacian operator has some nice properties (and is a linear kernel):

VAG(X, y) * 1 (X, )} = VG(X, ¥) * 1 (X, Y)

VZG(X, y) is also called LoG (Laplacian of Gaussian)

2l z|z2
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Discrete approximation of a LoG (std=1.4)

To recap the Laplacian is:

-3
x 10 http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

zero distant from the edge
> 0 just before the edge

£(x)

zero in between the edge
< 0 after the edge

£(x)




More on the LoG (useful things to know)

 The two dimensional convolution can be separated into four one-
dimensional convolution (cost efficiency):

V(X Y) =G (x, )} = G(X)*{l (X, y)*aaTyG(y)}w(y)*{l (X, y)*%G(x)}

« The LoG can be approximated as (again, easy to compute):
0:(%,Y) = 8, (6 Y) =G, * f (x,¥) =G, * f (x,¥) =(G,, -G, )* f (X, y) = DoG* f (x,y)

o, > O,

.................
""""""
o

g 1 N |




Canny Edge Detector (1986)

Problem of the edge detectors: produce thick edges, sometimes edges are not
connected because of noise

Smooth with a Gaussian, then apply Sobel
Thin edges, non-maxima suppression:
Edge is found if

a) response exceeds a given threshold and

b) it is not dominated by responses at neighboring points in a direction normal to the
candidate edge - the edge must be higher than the edge magnitude of the pixels on
either side

Edge strength

Threshold

— 13
Ae direction

F(X)

Suppressed

Detected edges




45



Canny Edge (2)

» Extends weak edges: Hysteresis controlled by two thresholds T1 > T2; all pixels
above T1 are marked as edge; then all pixels connected to these edges whose
value is above T2 will be selected as edge (avoid ‘dashed edges’)

}

thueskolf
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While there are points with high gradient
that have not been visited

Find a start point that is a local maximum in the
direction perpendicular to the gradient
erasing points that have been checked

while possible, expand a chain through
the current point by:

1) predicting a set of next points, using

the direction perpendicular to the gradient

2) finding which (if any) is a local maximum
in the gradient direction

3) testing if the gradient magnitude at the
maximum is sufficiently large

4) leaving a record that the point and
neighbours have been visited

record the next point, which becomes the current point
end

end




original image (rice.tif) Sobel (th=0.09)



