Key properties of local features

Locality, robust against occlusions

Must be highly distinctive, a good feature should allow
for correct object identification with low probabillity of
mismatch

Easy to extract and match, efficiency
Quantity: many features from small objects

Invariance to:

— noise

— changes in illumination

— scaling

— rotation

— viewing direction (to a certain extent)
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Scale Invariant Feature Transform
(SIFT)

« Well engineered local features, designed to address
these requirements

* Proposed by David Lowe “Distinctive Image Features
from Scale Invariant Features”, International Journal of
Computer Vision, Vol. 60, No. 2, 2004, pp. 91-110

Slides adapted from D.Lowe and Cordelia Schmid, Recognition and
Matching based on local invariant features, CVPR 2003.
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Steps

Scale-space extrema detection
Keypoint localization
Orientation assignment
Generation descriptors
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Finding keypoints

« Detect points in which the Laplacian (of Gaussian) of the
Image is large (Lindeberg)

« This has been experimentally shown to be a stable
Image feature compared to gradients or Harris corner
detection functions

 To achieve invariance to scale, use the normalized LoG:

LoG. . =¢*

norm

2 2
@xGZG L0 ayG; ] 202G
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« Build a scale space, each octave is a collection of
Images smoothed in sequence:

2
o,ko,k°o,...

 When we reach a new octave (sigma doubles),
downsample and start a new octave

* |f each octave I1s made of s intervals:

k=2"°

« Adjacent image scales are subtracted to produce the
difference-of-Gaussian images
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Recall that the Laplacian of Gaussian can be
approximated as a difference of two Gaussians

Smoothed images L can be computed efficiently
D Is then computed as simple image subtraction

It can be shown that the difference incorporates the
normalization factor t (c?)

o, >0,
L(x,y,0)=G(X,y,0)*1(X,Y) o, /N
G(x, y,ko)—G(x, y,0) ~ (k —1)o?V’G 01\\‘ ................
L(%,Y,ko) - L(x,¥,0) = (k-1)o"V*G

K-1 is constant across scales
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Scale
(next
octave)

Downsample (
Y

Graphically...

L = » e
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Local extrema detection

* Find local extrema (max
or min) of DoG
A

« Compare each point with A
Ll =y e

Its eight neighbors at the A =7 A

same scale and nine . T T T T
neighbors at two nearby Ca

scales

|

Xx=(x,y,o)
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Improve reliability

~or each candidate keypoint
Discard low contrast keypoints

Discard edges, difference-of-Gaussian has
strong response to edges, unfortunately edges
are unstable (due to translation or noise)
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‘D(x)‘ <t => low contrast point

« Check principle curvature of D(), edges will have large
principal curvature across edge but small one in the

perpendicular direction

D

H: XX

D

yX

D

Xy

D

yy

/

estimating using differences

* the eigenvalues of H are proportional to the principle
curvatures of D, as for the Harris corner detector we can
avoid computing the eigenvalues
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th(H)=D, +D,, =4 +4,
det(H)=D,-D,, - szy =4,

check that det(H) > 0
tr(H)? _ (4 +4) _(r+1)
det(H) 44, r
r=A414,
2
tr(H) IS min when r =1, increases elewhere
det(H
A 2
pick # =t = 1

°
tr(H)?
det(H)

keep points for which <1

e.0.r =10
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Orientation assignment

For the selected keypoint, at the closest scale:
* compute a gradient orientation histogram

» determine dominant orientation =» assign this
orientation to the keypoint

mM(X, ) = J(L(X+1, y) = L(X=1, y))? + (L(X, y +1) — L(X, y —1))?
O(x,y) =arctan((L(x,y+1)—L(x,y—-1)/(L(x+1,y)—L(x-1,¥)))

'

o ¢ 2
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Orientation assignment: technicalities

Histogram size is 36 bins

Use magnitude of gradient as weight in the histogram,
multiplied by Gaussian weights

Given scale s, use Gaussian with sigma=1.5*s

Detect highest peak and any other local peak within 80%
of the highest peak - these local peaks generate extra
keypoints (experimentally this happens 15% of the
times)

Fit a parabola to 3 points in the histograms closest to the
match, and re-detect maximum for better accuracy
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Descriptor

Thresholded image gradients are sampled over 16x16 array of
locations in scale space

Create array of orientation histograms

To achieve orientation invariance, orientations are rotated relative to
the keypoint orientation (prev. slide)

8 orientations x 4x4 histogram array = 128 dimensions
Below: schematic representation (in this case of a 2x2 descriptor

from a 8x8 array of locations)

Image gradients Keypoint descriptor
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Orientations are weighted with Gaussian sigma=scale/2

Brightness change will not affect gradients, since they
are computed from pixel differences

A change in image contrast, in which all pixels of an
Image are multiplied by a constant, will multiply gradients
of the same amount

— To reduce the effect of illumination change, keypoint descriptors

are normalized to unit length

To reduce artifacts due to saturation: remove large
gradients after first normalization (>0.2), and re-
normalize the result
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Example of keypoint detection

SINA 11/12

%% (a) 233x189 image

(b) 832 DOG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures



Keypoint matching

The best match for each keypoint is found as the nearest neighbor
In a database of SIFT features from training images

Use Euclidian distance between descriptors
k1(/), 1€[1,128]
k2(l), 1<[1,128]

d(k1,k2) =|k1—k2|

How do we discard features that do not have a good match? Pick a
global threshold?

Lowe suggests using ratio of nearest neighbor to ratio of second
nearest neighbor

This measures performs well: correct matches need to have closest
match significantly closer than the closest incorrect match

False match: there is likely to be a number of other false matches
within similar distances due to the high dimensionality of the feature
space
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* Matching:

k() i=1,.M
compute:
dy = [k =Ky

sortk; dependingond,;, j #1
klst’ k2nd’ I(Brd"'

d
score= —=%

1,2nd
consider good match if score> 0.8
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Curiosity: real iImplementation

* To avoid exhaustive search Lowe proposes an
approximate algorithm called Best-Bin-First,
which returns the closest neighbor with high
probability

 Priority search, with cut-off after checking 200
first candidates

* For a database of 100K keypoints speed up of 2
orders of magnitude, with less than 5% of
correct match loss
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Conclusions

SIFT features are reasonably invariant to
rotation, scaling, and illumination changes

We can use them for matching and object
recognition among other things

Robust to occlusion, as long as we can see at
least 3 features from the object we can compute
the location and pose

Efficient on-line matching, recognition can be
performed In close-to-real time (at least for small
object databases)
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Empirical evaluation of the parameters

* In the paper most parameters are determined empirically

« 32 real images, outdoor scenes, human faces, aerial photographs,
iIndustrial images

* Range of “synthetic” transformation, rotation, scaling, affine stretch,
change in brightness, contrast, noise

« Because transformations were synthetic, it was possible to know
where each feature will be in the transformed image and compare the
result of the match

* Check repeatability:

— # of keypoints that are detected after the transformation, in the
correct location and scale

— # of keypoints that are successfully matched using the nearest
descriptor technique
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1) Frequency of sampling in scale
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Figure 3: The top line of the fi rst graph shows the percent of keypoints that are repeatably detected at
the same location and scale in a transformed image as a function of the number of scales sampled per
octave. The lower line shows the percent of keypoints that have their descriptors correctly matched to
a large database. The second graph shows the total number of keypoints detected in a typical image
as a function of the number of scale samples.

...best value appears to be 3 scales per octave
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2) Smoothing for each octave (sigma)

100
S
= 60
E
=
(03]
©
2 40
@ Matching location and scale
Mearest descriptor in database -——=--
20
0
1 1.2 1.4 1.6 18 9

Prior smoothing for each octave (sigma)

Figure 4: The top line in the graph shows the percent of keypoint locations that are repeatably detected
in a transformed image as a function of the prior image smoothing for the fi rst level of each octave.
The lower line shows the percent of descriptors correctly matched against a large database.

o=1.6 (compromise bw performance and efficiency)
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» Size of the descriptor:
— r number of orientations in the histograms

— n the width of the nxn array of orientation
histograms

— this gives a rxnxn descriptor vector
« Examples:

— 8x2x2=32 ...
— 8x4x4=128,
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3) Size of the descriptor

60
S
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@
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Width n of descriptor (angle 50 deg, noise 4%)

Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40.000
kevpoints as a function of width of the n x n keypoint descriptor and the number of orientations in

each histogram. The graph is computed for images with affi ne viewpoint change of 50 degrees and
addition of 4% noise.

8 orientations 4x4 - 128 dimensions
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4) Threshold

08
0.7
06 PDF for correct matches
FPDF for incorrect matches
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Figure 11: The probability that a match is correct can be determined by taking the ratio of distance
from the closest neighbor to the distance of the second closest. Using a database of 40.000 keypoints.

the solid line shows the PDF of this ratio for correct matches. while the dotted line is for matches that
were incorrect.

0.8 is a threshold that eliminates 90% of false matches at
the cost of discarding only 5% of good matches
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Results
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jon recognition

Locat

SINA 11/12



3D Object Recognition
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3D Object Recognition
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Recognition under occlusion
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Improvements...
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Key point localization

Refine maxima and minima
detection

Fit a quadratic to surrounding A
. S S
values for sub-pixel and sub-scale T I

Interpolation (Brown & Lowe,
2002) Scal
Taylor expansion around point:

D(x+x)=D(x)+VD(x)" x + %XTH(X)X

X = (x, Y, G)T \
Offset of extremum (use finite

differences for derivatives): D and its derivatives are
. evaluated around the same
X =—H(x) VD(X) point, x here is the offset
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Speeded-Up Robust Features (SURF)

 H.Bay, A.Ess, T.Tuytelaars, L. Van Gool, Computer
Vision and Image Understanding (CVIU), Vol. 110, No.

3, pp. 346--359, 2008

« Similar to SIFT but faster and more robust (according to
the paper)

* Available in OpenCV

SINA 11/12



SURF Keypoints

 Compute:
L
H(x,o)=
L
XY i
52
%],
“ X J

 ...In practice compute an approximation

« Search maxima, solving:
argmax{det(H(x, o))}
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« ldea: gaussians are in practice discretized and cropped
« Compute an approximation of H using box filters

1

- §

1

-

0’g O°g 0’g
ox* " oy’ Ox0y
« Box filters can be computed efficiently using the integral
Image (next)
« Computing these filters is fast irrespectively of the size,

no need to perform pyramid decomposition and
downsampling
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Scale
Scale

- Instead of down-sampling the
T Image, up-scale the filters

e |

Fig. 5. Filters D, (top) and D, (bottom) for two successive scale
levels (9 % 9 and 15 x 15). The length of the dark lobe can only

be increased by an even number of pixels in order to guarantee the
presence of a central pixel (top).
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27 51 | 75 (09

15 27 | 39 |®1

Octaves

8 15 |21 |27

Scale

Fig. 6. Graphical representation of the filter side lengths for three dif-
ferent octaves. The logarithmic horizontal axis represents the scales.
Note that the octaves are overlapping in order to cover all possible
scales seamlessly.
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Descriptor

Similar to SIFT, describe distribution of intensities

Compute orientations using squared filters (called Haar
wavelets)

The dimension of the descriptor is 64, to speed up
matching

Fig. 9. Haar wavelet filters to compute the responses in = (left) and
y direction (right). The dark parts have the weight —1 and the light
parts +1.
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From scale s of the keypoint

Firstly compute descriptor principle orientation, compute response to
Haar wavelets in neighborood of 6s points (size of filters 4s points)

Weight responses using a Gaussian sigma=2s
The response each filter dx,dy is represented in a x,y plane

dy
T slide a window of size pi/3
/” N\ compute the sum of dx and dy within
L \ the windows
T 0~ take the maximum
\ e
\\ y /
|

Fig. 10. Orientation assignment: A sliding orientation window of size
% detects the dominant orientation of the Gaussian weighted Haar
wavelet responses at every sample point within a circular neighbour-
hood around the interest point.
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Descriptor

> dx
5 as
> dy

/\ 2 dyl

Fig. 12. To build the descriptor, an oriented quadratic grid with
4 x 4 square sub-regions is laid over the interest point (left). For each
square, the wavelet responses are computed. The 2 x 2 sub-divisions
of each square correspond to the actual fields of the descriptor.
These are the sums dr, |dx|, dy, and |dy|, computed relatively to the
orientation of the grid (right).
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Size of the
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3 dr
2 ey
2y
2 |ety]

Fig. 13. The descriptor entries of a sub-region represent the nature
of the underlying intensity pattern. Left: In case of a homogeneous
region, all values are relatively low. Middle: In presence of frequencies
in z direction, the value of Z |dz| is high, but all others remain low.
If the intensity is gradually increasing in = direction, both values

2_ds and ) | |ds| are high. Image sub-region SIFT gradients SURF sums

D dre
2 laxd
2. dy
2l

clean

> dx
2 lax|
2 dy
> layl

noisy

Fig. 14. Due to the global integration of SURF’s descriptor, it stays
more robust to various image perturbations than the more locally
operating SIFT descriptor.
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Integral Image

* The integral image representation allows
for fast computation of rectangular two-
dimensional image features

* Originally proposed by Viola & Jones
(2001) for face detection

* Used In the SURF algorithm to compute
box filters at different scales
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Examples of features
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http://upload.wikimedia.org/wikipedia/commons/a/a3/Haar_wavelet.png

Integral Image

« The integral image at location x,y contains the sum of all
pixels above and left of x,y:

li(x,y)= > i(x',y")

X'<X,y'<y

« Computed once, from a single pass:

S(X1 y) — S(X1 y _1) + i(X1 y)
H(x,y)=u(x-1y)+s(x,y)
ii(x—1, y)//

i(-1,y)=0 i(x, y)
S(X’ y_l)/ ’
s(x,—1)=0 \ at start
/

starting each row
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The sum of the pixels within rectangle D can be computed with four
array references:

D =ii(4) +ii(1) - (i (2) +ii(3)) =
(A+B+C+D)+A-(B+A+C+A)
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