Problems with template matching

The template represents the object as we expect to find
It in the image
The object can indeed be scaled or rotated

This technigue requires a separate template for each
scale and orientation

Template matching become thus too expensive,
especially for large templates

Sensitive to:
— noise
— occlusions
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Local template matching

A possible solution is to reduce the size of the templates,
and detect salient features in the image that characterize
the object we are interested in

Extract a set of local features that are invariant to
translation, rotation and scale...
Perform matching only on these local features

We then analyze the spatial relationships between those
features

See for example:
Corner detector (Harris and Stephens,1988)
SIFT (Lowe, 1999)
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* Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters
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Applications

Object recognition

3D reconstruction

Motion detection
Panorama reconstruction
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How do we build a panorama?

* We need to match (align) images
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Matching with Features

 Detect feature points in both images

* Find corresponding pairs
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Matching with Features

 Detect feature points in both images
* Find corresponding pairs

« Use these pairs to align images
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Matching with Features

* Problem 1:

— Detect the same point independently in both
Images

*no chance to match!

*\We need a repeatable detector
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Matching with Features

* Problem 2:

— For each point correctly recognize the
corresponding one

*\We need a reliable and distinctive descriptor
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Moravec interest operator

« This operator was developed back in 1977 for navigation

* Defines “points of interest” regions in the image that are
good candidates for matching in consecutive image
frames

* |tis considered a “corner detection” since it defines

Interest points as points in which there is large intensity
variation in every direction
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Place a small square window (3x3, 5x5, 7x7...) centered
at a point P

Shift this window by one pixel in each of eight principle
directions (four diagonals, horizontal and vertical)

Take the sum of squares of intensity differences of
corresponding pixels in these two windows

Define the intensity variation V as the minimum intensity
variation over the eight principle directions
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A Interior Region B. Edge C. Edge D. Edge
Little intensity variation Little intensity variation Large intensity variation Large intensity variation
in any direction along edge, large in all directions in all directions
variation perpendicular
to edge
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Algorithm
for each x,y in the image
V,,(x,y)= Z:(I(x+u+0/,y+v+b)—l(x+0/,y+b))2
(u,v) are the considc;rid shifts: (1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,—1),(1,—-1)

Clx,y)=min(V, ,(x,y))

threshold, set C(x,y) to zero of C(x,y)<T
non-maximal suppression to find local maxima
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Non maximal suppression

1 if Vix,y)=V(p,q),V(p,q)eN(x,y)
I(x,y)= .
0 otherwise
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Source: http://www.cim.mcgill.ca/~dparks/CornerDetector/index.htm

Results
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* Noise sensitivity

« Small imperfection in edges will be picked
up as corners

* Edges not oriented along one of the height
directions will also be candidate corners
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Harris and Stephens

« Similarly to Moravec, consider now a continuous
function:

E,(x)= > (Ix+d)—/(x+d+h))’

dew

X =(x,y)eR’
d,heR’

» Perform local Taylor expansion:

I(x+h)=I(x)+VIX) h=I(x+h)=I/(x)=VI(x)"h

ol(x) dI(x) ]
ox ' oy

VI(x) :{
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E,x)=> (Vix+d'h) => hVi(x-+dVi(x+d) h=

dew dew
S oL e IX:a/(x+d)
B NN R OX
_ Ol(x+d)

:hT i Zwlj ZWIXIV_ Iy 8y
_ZWIXIV ZWI)3 |

It is possible to introduce a weighting window w() for
each point. For example a Gaussian:

mul

22
eG

1

o2m

w(d) =
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...and compute the filtered variation

E. (x)=h"Ch
‘L > Pw(d) Y11 w(d)

the eigenvalues of C will be proportional to the principle curvatures of
the image surface and form a rotationally invariant description of C

from linear algebra:

E, () =4V, + AV,
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Three cases
A, = A, = no structure
A >>A, =00r A, >> A, ~0=edge
A, >>0and 4, >>0 = corner

A2
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define the following index R

R = det(C)—k-tr?(C)
tr(é): A2y =12 +17

det( ) A, = (IXAij2

t
C =C —trace and determinant

are preserved

usually, k=0.04
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Lambda 2

Contour of Cixy) for k=0.05
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Source: http://www.cim.mcgill.ca/~dparks/CornerDetector/index.htm

Results
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Problems...

* Moravec and Harris have problems with
rotations...

SINA 11/12



The scale problem
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Other features

L(z,y: 1) :/ f(a =€y —n)g(&m: t)dEdn
(£.n)ER?

1 o
9(z,y; t) = 5—e (=" +y7)/2t

Lx‘:‘yﬁ('?'; t] — a;r“y-SL[:'? " t] — (ax“yﬁg("-' "3 t)) * f(? ]
' E

Figure 2: The Gaussian kernel and its derivatives up to order two in the 2-D case.
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L L Responds to bolb-like structures,

H=| © ¥ but also to edges
LXy LW
Responds to bolb-like structures,

Vi=tr(H)=L,+L, / and saddles, insensitive to edges
det(H)=L, L, —L,°

Figure 4: Differential descriptors for blob detection/interest point detection: (left) A grey-
level image of size 210 x 280 pixels. (middle) The Laplacian V2L computed at ¢t = 16. (right)
The determinant of the Hessian det HL computed at ¢t = 16.
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Search across scale

« A common approach is to search for maxima across
scales

* Since the amplitude of spatial derivatives decreases
with scale, the amplitude of features is expected to
decrease

* Define “normalized” features:

VZ — tr(Hnorm) — t(LXX + Lyy)

norm

det(H, )= t2<|—xx L,, — nyz)

Lindeberg, “Feature Detection With Automatic Scale Selection’,

Int. Journal of Computer Vision, 1998
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Figure 2. Scale-space signatures of the trace and the determinant of the normalized Hessian matrix computed for two details of a sunflower
image: (left) grey-level image. (middle) signature of (trace ’H,w,-mL)2, (right) signature of (det HpoymL )2. (The signatures have been computed
at the central point in each image. The horizontal axis shows effective scale. essentially the logarithm of the scale parameter. whereas the scaling

of the vertical axis 1s linear in the normalized operator response.)
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(t!‘ace Hn,om L)2 (det Hnorm L) 4

Figure 4. The 250 most significant normalized scale-space extrema detected from the perspective projection of a sine wave (with 10% added
Gaussian noise).

(trace HnormL)? (det HrormL)?
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