Online Multiple Instance Learning: A Boosting Approach

Carlo Ciliberto SINA – Genova – 12/12/2011

Boosting

Well-established class of techniques applied to data classification

Boosting

Well-established class of techniques applied to data classification

• Weak Learner: imprecise binary function.

Boosting

Well-established class of techniques applied to data classification

• Weak Learner: imprecise binary function.

• Weighted according to classification **accuracy**.

Boosting

Well-established class of techniques applied to data classification

• Weak Learner: imprecise binary function.

Weighted according to classification accuracy.

Combined into an accurate strong classifier.

Inputs:

• Training set $\{(x_i, y_i)\}_{i=1}^n$ $x \in \mathcal{X}$ $y_i \in [-1, 1]$

Inputs:

- Training set $\{(x_i, y_i)\}_{i=1}^n$ $x \in \mathcal{X}$ $y_i \in [-1, 1]$
- Weak Learners ${\cal H}$

 $D_1(i)$

Inputs:

- Training set $\{(x_i, y_i)\}_{i=1}^n$ $x \in \mathcal{X}$ $y_i \in [-1, 1]$
- Weak Learners \mathcal{H}

Initialization:

• Uniform initial distribution $\ D_1(i) = 1/n$

Training:

For t = 1,...,T:

Training:

For t = 1,...,T:

Training:

For t = 1,...,T:

Training:

For t = 1,...,T:

• Set
$$\alpha_t = rac{1}{2} \log rac{1-\epsilon_t}{\epsilon_t}$$
, $\epsilon_t = \sum_{i/y_i
eq h(x_i)} D_t(i)$

Training:

For t = 1,...,T:

• Set
$$\alpha_t = rac{1}{2} \log rac{1-\epsilon_t}{\epsilon_t}$$
, $\epsilon_t = \sum_{i/y_i
eq h(x_i)} D_t(i)$

Training:

For t = 1,...,T:

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$
, $\epsilon_t = \sum_{i/y_i \neq h(x_i)} D_t(i)$

• Update the weights
$$D_{t+1}(i) = rac{D_t(i)exp(-lpha_ty_ih_t(x_i))}{Z_t}$$

Training:

For t = 1,...,T:

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$
, $\epsilon_t = \sum_{i/y_i \neq h(x_i)} D_t(i)$

• Update the weights
$$D_{t+1}(i) = rac{D_t(i)exp(-lpha_ty_ih_t(x_i))}{Z_t}$$

Test:

Test:

Test:

For any novel example $x \in \mathcal{X}$:

Test:

For any novel example $x \in \mathcal{X}$:

• The strong classifier returns
$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Test:

For any novel example $x \in \mathcal{X}$:

• The strong classifier returns
$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Bags of Instances

Images: collections of features (SURF, SIFT, etc.).

Bags of Instances

Images: collections of features (SURF, SIFT, etc.).

Bags of Instances

Images: collections of features (SURF, SIFT, etc.).

Bags of Instances

- Images: collections of features (SURF, SIFT, etc.).
- Positive instance: feature extracted from the object.

Bags of Instances

- Images: collections of features (SURF, SIFT, etc.).
- Positive instance: feature extracted from the object.
- **Positive bag:** image with **at least** one positive feature.

Bags of Instances

- Images: collections of features (SURF, SIFT, etc.).
- Positive instance: feature extracted from the object.
- Positive bag: image with at least one positive feature.

• Learn to classify bags without knowing the single features labels.

MIL Ball: Classification

Instance

MIL Ball: Classification

- **Center:** a point in the feature space.
- Radius: determines the weak learner tolerance.

MIL Ball: Classification

- Center: a point in the feature space.
- Radius: determines the weak learner tolerance.

• **Positive Classification:** non-void intersection.

Initialization

- $\mathcal{H} = \{h_1, ..., h_N\}$ pre-ordered set of weak learners.
- set $\alpha_n = 0 \quad \forall n \in \{1, \dots, N\}.$

I training sample

Training

• Learning principle $h_n \leftarrow L(h_n, I, \lambda)$.

Training

• Learning principle $h_n \leftarrow L(h_n, I, \lambda)$.

Training

- Learning principle $h_n \leftarrow L(h_n, I, \lambda)$.
- correct: $\lambda \leftarrow \lambda/2(1 \epsilon_n)$.

incorrect: $\lambda \leftarrow \lambda/2\epsilon_n$.

Training

- Learning principle $h_n \leftarrow L(h_n, I, \lambda)$.
- correct: $\lambda \leftarrow \lambda/2(1 \epsilon_n)$.

incorrect: $\lambda \leftarrow \lambda/2\epsilon_n$.

Training

- Learning principle $h_n \leftarrow L(h_n, I, \lambda)$.
- correct: $\lambda \leftarrow \lambda/2(1 \epsilon_n)$. incorrect: $\lambda \leftarrow \lambda/2\epsilon_n$.

•
$$\alpha_n = \log \frac{1 - \epsilon_n}{\epsilon_n}$$
.

Training

- Learning principle $h_n \leftarrow L(h_n, I, \lambda)$.
- correct: $\lambda \leftarrow \lambda/2(1 \epsilon_n)$. incorrect: $\lambda \leftarrow \lambda/2\epsilon_n$.

•
$$\alpha_n = \log \frac{1 - \epsilon_n}{\epsilon_n}$$
.

MIL Ball: Learning Principle

MIL Ball: Learning Principle

• Accuracy: keeps track of the MIL Ball error rate.

negative instance

positive instance

MIL Ball: Learning Principle

- Accuracy: keeps track of the MIL Ball error rate.
- **Radius:** is updated to keep classification accuracy maximized.

positive instance

Why The Hand?

Why The Hand?

• **Humanoids:** main tool of physical exploration.

Why The Hand?

- **Humanoids:** main tool of physical exploration.
- Directly controllable: easier to learn autonomously.

Learning: Data Collection

Labeling

- MIL: requires weak supervision.
- Strategy: random arm-gaze movements.
- **Positive Label:** co-occurrence of visual and motor activity.

Motors state: Moving

Motion Detected

Hand is (probably) in the FoV

Imprecise but sufficient for MIL.

Localization

• Feature Selection: positive MIL Balls respond to positive features.

Localization

- Feature Selection: positive MIL Balls respond to positive features.
- **Cluster:** gaussian mixtures.

Application: Online Object Recognition

Online Object Recognition

