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Well-established class of techniques applied to data classification

Weak Learner: imprecise binary function.

Weighted according to classification accuracy.

Combined into an accurate strong classifier.

D= h<y

Training set
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Multiple Instance Learning

Bags of Instances

= Images: collections of features (SURF, SIFT, etc.).
= Positive instance: feature extracted from the object.

= Positive bag: image with at least one positive feature.

@® Negative instance Positive b
@ Positive instance ItIve bag <%

= Learn to classify bags without knowing the single features labels.
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= Center: a point in the feature space.
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MIL Ball Weak Learners

MIL Ball: Classification

= Center: a point in the feature space.

=  Radius: determines the weak learner tolerance.

Feature Space

Intersection: W No intersection:
Positive classification Negative classification

® Instance

= Positive Classification: non-void intersection.

Auer and Ortner 2004
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Initialization

= H={hy,....hn} pre-ordered set of weak learners.
= set a, =0 Vne{l,.. N}




Training

Online Boosting

(A) =

I training sample




Training

Online Boosting




Online Boosting

Training
= Learning principle h, < L(h,,I,)\).




Online Boosting

Training
= Learning principle h, < L(h,,I,)\).




Online Boosting

Training
= Learning principle h, < L(h,,I,)\).
= correct: A+ A/2(1-—¢,).

incorrect: A < \/2e,.




Online Boosting

Training
= Learning principle h, < L(h,,I,)\).
= correct: A+ A/2(1-—¢,).

incorrect: A < \/2e,.




Online Boosting

Training

= Learning principle h, < L(h,,I,)\).

= correct: A+ A/2(1-—¢,).
incorrect: A < \/2e,.

= q, =log 16_6".




Online Boosting

Training

= Learning principle h, < L(h,,I,)\).

= correct: A+ A/2(1-—¢,).
incorrect: A < \/2e,.

= q, =log 16_6".




MIL Ball Weak Learners

MIL Ball: Learning Principle



MIL Ball Weak Learners

MIL Ball: Learning Principle

= Accuracy: keeps track of the MIL Ball error rate.

B negative instance

] positive instance



MIL Ball Weak Learners

MIL Ball: Learning Principle

Accuracy: keeps track of the MIL Ball error rate.

Radius: is updated to keep classification accuracy maximized.

B negative instance

] positive instance
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Application: Own Hand Recognition

Why The Hand?

= Humanoids: main tool of physical exploration.

= Directly controllable: easier to learn autonomously.




Learning: Data Collection

Labeling

= MIL: requires weak supervision.
= Strategy: random arm-gaze movements.

= Positive Label: co-occurrence of visual and motor activity.

Hand is (probably)
in the FoV

Motors state: Moving Motion Detected

= |mprecise but sufficient for MIL.
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Localization

=  Feature Selection: positive MIL Balls respond to positive features.

= Cluster: gaussian mixtures.
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