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Abstract — A visual attention system, inspired by the behav-
ior and the neuronal architecture of the early primate visual
system, is presented. Multiscale image features are combined
into a single topographical saliency map. A dynamical neu-
ral network then selects attended locations in order of decreas-
ing saliency. The system breaks down the complex problem of
scene understanding by rapidly selecting, in a computationally
efficient manner, conspicuous locations to be analyzed in detail.

Index terms: Visual attention, scene analysis, feature extrac-
tion, target detection, visual search.
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I. INTRODUCTION

Primates have a remarkable ability to interpret complex
scenes in real time, despite the limited speed of the neuronal
hardware available for such tasks. Intermediate and higher vi-
sual processes appear to select a subset of the available sensory
information before further processing [1], most likely to reduce
the complexity of scene analysis [2]. This selection appears to
be implemented in the form of a spatially circumscribed region
of the visual field, the so-called “focus of attention,” which scans
the scene both in a rapid, bottom-up, saliency-driven and task-
independent manner as well as in a slower, top-down, volition-
controlled and task-dependent manner [2]

Models of attention include “dynamic routing” models, in
which information from only a small region of the visual field
can progress through the cortical visual hierarchy. The attended
region is selected through dynamic modifications of cortical con-
nectivity, or through the establishment of specific temporal pat-
terns of activity, under both top-down (task-dependent) and
bottom-up (scene-dependent) control [3], [2], [1].

The model proposed here (Fig. 1) builds on a second
biologically-plausible architecture, proposed by Koch and Ull-
man [4] and at the basis of several models [5], [6]. It is related
to the so-called “feature integration theory”, proposed to ex-
plain human visual search strategies [7]. Visual input is first
decomposed into a set of topographic feature maps. Different
spatial locations then compete for saliency within each map,
such that only locations which locally stand out from their sur-
round can persist. All feature maps feed, in a purely bottom-up
manner, into a master “saliency map”, which topographically
codes for local conspicuity over the entire visual scene. In pri-
mates, such a map is believed to be located in the posterior
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Fig. 1. General architecture of the model.

parietal cortex [8] as well as in the various visual maps in the
pulvinar nuclei of the thalamus [9]. The model’s saliency map
is endowed with internal dynamics which generate attentional
shifts. This model consequently represents a complete account
for bottom-up saliency, and does not require any top-down guid-
ance to shift attention. This framework provides a massively
parallel method for the fast selection of a small number of in-
teresting image locations to be analyzed by more complex and
time-consuming object recognition processes. Extending this
approach, in “guided search” feedback from higher cortical ar-
eas (e.g., knowledge about targets to be found) was used to
weight the importance of different features [10], such that only
those with high weights could reach higher processing levels.

II. MODEL

Input is provided in the form of static color images, usually
digitized at 640 x 480 resolution. Nine spatial scales are created
using dyadic Gaussian pyramids [11], which progressively low-
pass filter and subsample the input image, yielding horizontal
and vertical image reduction factors ranging from 1:1 (scale 0)
to 1:256 (scale 8) in eight octaves.

Each feature is computed by a set of linear “center-surround”
operations akin to visual receptive fields (Fig. 1): Typical vi-
sual neurons are most sensitive in a small region of the visual
space (the center), while stimuli presented in a broader, weaker
antagonistic region concentric with the center (the surround)
inhibit the neuronal response. Such architecture, sensitive to
local spatial discontinuities, is particularly well-suited to detect-
ing locations which locally stand out from their surround, and
is a general computational principle in the retina, lateral genic-
ulate nucleus and primary visual cortex [12]. Center-surround
is implemented in the model as the difference between fine and
coarse scales: The center is a pixel at scale ¢ € {2,3,4}, and
the surround is the corresponding pixel at scale s = ¢+ d, with
d € {3,4}. Across-scale difference between two maps, denoted
“©” below, is obtained by interpolation to the finer scale and
point-by-point subtraction. Using several scales not only for c,
but also for § = s — ¢, yields truly multiscale feature extrac-
tion, by including different size ratios between the center and
surround regions (contrary to previously used fixed ratios [5]).



A. Eaxtraction of early visual features

With r, g and b being the red, green and blue channels of the
input image, an intensity image I is obtained as I = (r+g+b)/3.
I is used to create a Gaussian pyramid I(c), where o € [0..8]
is the scale. The r, g and b channels are normalized by I in
order to decouple hue from intensity. However, because hue
variations are not perceivable at very low luminance (and hence
are not salient), normalization is only applied at the locations
where I is larger than 1/10 of its maximum over the entire
image (other locations yield zero r,g and b). Four broadly-
tuned color channels are created: R = r — (g + b)/2 for red,
G =g — (r+1b)/2 for green, B =b— (r + g)/2 for blue, and

=(r+g)/2—|r—g|/2 —b for yellow (negative values are set
to zero). Four Gaussian pyramids R(c),G(0), B(o) and Y (o)
are created from these color channels.

Center-surround differences (6 defined previously) between a
“center” fine scale ¢ and a “surround” coarser scale s yield the
feature maps. The first set of feature maps is concerned with
intensity contrast, which in mammals is detected by neurons
sensitive either to dark centers on bright surrounds, or to bright
centers on dark surrounds [12]. Here, both types of sensitivities
are simultaneously computed (using a rectification) in a set of
six maps Z(c, s), with ¢ € {2,3,4} and s=c+ 4, § € {3,4}:

L(e,s) = |I(c) & 1(s)| (1)

A second set of maps is similarly constructed for the color
channels, which in cortex are represented using a so-called “color
double-opponent” system: In the center of their receptive field,
neurons are excited by one color (e.g., red) and inhibited by
another (e.g., green), while the converse is true in the surround.
Such spatial and chromatic opponency exists for the red/green,
green/red, blue/yellow and yellow/blue color pairs in human
primary visual cortex [13]. Accordingly, maps RG(c,s) are
created in the model to simultaneously account for red/green
and green/red double opponency (Eq. 2), and B)(c,s) for
blue/yellow and yellow/blue double opponency (Eq. 3):

RG(c,8) = |(R(c) = G(c)) © (G(s) — R(s))] (2)
BY(c,s) = [(B(c) —Y(c)) & (Y(s) — B(s))l 3)

Local orientation information is obtained from I using ori-
ented Gabor pyramids O(o,0), where o € [0..8] represents
the scale and 6 € {0°,45°,90°,135°} is the preferred orien-
tation [11]. (Gabor filters, which are the product of a cosine
grating and a 2D Gaussian envelope, approximate the recep-
tive field sensitivity profile (impulse response) of orientation-
selective neurons in primary visual cortex [12].) Orientation
feature maps, O(c,s,8), encode, as a group, local orientation
contrast between the center and surround scales:

O(c,8,6) =|0(c,0) © O(s, )| (4)

In total, 42 feature maps are computed: Six for intensity, 12 for
color and 24 for orientation.

B. The Saliency Map

The purpose of the saliency map is to represent the conspicu-
ity — or “saliency” — at every location in the visual field by a
scalar quantity, and to guide the selection of attended locations,
based on the spatial distribution of saliency. A combination of
the feature maps provides bottom-up input to the saliency map,
modeled as a dynamical neural network.

One difficulty in combining different feature maps is that they
represent a priori not comparable modalities, with different dy-
namic ranges and extraction mechanisms. Also, because all 42
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Fig. 2. The normalization operator N (.).

feature maps are combined, salient objects appearing strongly
in only a few maps may be masked by noise or less salient ob-
jects present in a larger number of maps.

In the absence of top-down supervision, we propose a map
normalization operator, N'(.), which globally promotes maps
in which a small number of strong peaks of activity (conspicu-
ous locations) is present, while globally suppressing maps which
contain numerous comparable peak responses. N(.) consists of
(Fig. 2): 1) Normalizing the values in the map to a fixed range
[0..M], in order to eliminate modality-dependent amplitude dif-
ferences; 2) finding the location of the map’s global maximum
M and computing the average m of all its other local maxima,;
3) globally multiplying the map by (M — m)>.

Only local maxima of activity are considered such that N(.)
compares responses associated with meaningful “activitation
spots” in the map and ignores homogenous areas. Compar-
ing the maximum activity in the entire map to the average over
all activation spots measures how different the most active loca-
tion is from the average. When this difference is large, the most
active location stands out, and we strongly promote the map.
When the difference is small, the map contains nothing unique
and is suppressed. The biological motivation behind the design
of N(.) is that it coarsely replicates cortical lateral inhibition
mechanisms, in which neighboring similar features inhibit each
other via specific, anatomically-defined connections [15].

Feature maps are combined into three “conspicuity maps”, Z
for intensity (Eq. 5), C for color (Eq. 6), and O orientation
(Eq. 7), at the scale (¢ = 4) of the saliency map. They are
obtained through across-scale addition, “@”, which consists of
reduction of each map to scale 4 and point-by-point addition:

4 c+4
I=p P N@(c9) (5)
c=2 s=c+3
_ 4 c+4
C=P P V(RG(c.9) + N(BY(c,3))] (6)
c=2 s=c+3

For orientation, four intermediary maps are first created by
combination of the six feature maps for a given 6, and are then
combined into a single orientation conspicuity map:

4 c+4
0= > N (@ P N(O(c,s,e))> (7)
6€{0°,45°,90°,135°} c=2 s=c+3

The motivation for the creation of three separate channels, Z,
C and O, and their individual normalization is the hypothesis
that similar features compete strongly for saliency, while dif-
ferent modalities contribute independently to the saliency map.



The three conspicuity maps are normalized and summed into
the final input S to the saliency map:

§=3 (W@ +N @ +N(©O)) ®)

At any given time, the maximum of the saliency map (SM)
defines the most salient image location, to which the focus of at-
tention (FOA) should be directed. We could now simply select
the most active location as defining the point where the model
should next attend to. However, in a neuronally-plausible im-
plementation, we model the SM as a 2D layer of leaky integrate-
and-fire neurons at scale 4. These model neurons consist of a sin-
gle capacitance which integrates the charge delivered by synap-
tic input, of a leakage conductance, and of a voltage threshold.
When threshold is reached, a prototypical spike is generated,
and the capacitive charge is shunted to zero [14]. The SM feeds
into a biologically-plausible 2D “winner-take-all” (WTA) neural
network [4], [1] at scale o = 4, in which synaptic interactions
among units ensure that only the most active location remains,
while all other locations are suppressed.

The neurons in the SM receive excitatory inputs from S and
are all independent. The potential of SM neurons at more
salient locations hence increases faster (these neurons are used
as pure integrators and do not fire). Each SM neuron excites its
corresponding WTA neuron. All WTA neurons also evolve inde-
pendently of each other, until one (the “winner”) first reaches
threshold and fires. This triggers three simultaneous mecha-
nisms (Fig. 3): 1) The FOA is shifted to the location of the
winner neuron; 2) the global inhibition of the WTA is triggered
and completely inhibits (resets) all WTA neurons; 3) local in-
hibition is transiently activated in the SM, in an area with the
size and new location of the FOA; this not only yields dynamical
shifts of the FOA, by allowing the next most salient location to
subsequently become the winner, but it also prevents the FOA
from immediately returning to a previously attended location.
Such an “inhibition of return” has been demonstrated in human
visual psychophysics [16]. In order to slightly bias the model
to subsequently jump to salient locations spatially close to the
currently attended location, a small excitation is transiently ac-
tivated in the SM, in a near surround of the FOA (“proximity
preference” rule of Koch and Ullman [4]).

Since we do not model any top-down attentional component,
the FOA is a simple disk whose radius is fixed to one sixth
of the smaller of the input image width or height. The time
constants, conductances, and firing thresholds of the simulated
neurons were chosen (see ref. [17] for details) so that the FOA
jumps from one salient location to the next in approximately 30—
70 ms (simulated time), and that an attended area is inhibited
for approximately 500-900 ms (Fig. 3), as has been observed
psychophysically [16]. The difference in the relative magnitude
of these delays proved sufficient to ensure thorough scanning of
the image, and prevented cycling through only a limited number
of locations. All parameters are fixed in our implementation
[17], and the system proved stable in time for all images studied.

C. Comparison with spatial frequency content models

Reinagel and Zador [18] recently used an eye-tracking device
to analyze the local spatial frequency distributions along eye
scan paths generated by humans while free-viewing grayscale
images. They found the spatial frequency content at the fixated
locations to be significantly higher than, on average, at random
locations. Although eye trajectories can differ from attentional
trajectories under volitional control [1], visual attention is often
thought as a pre-occulomotor mechanism, strongly influencing

260 ms

Fig. 3. Example of operation of the model with a natural image. Parallel
feature extraction yields the three conspicuity maps for color contrasts
(C), intensity contrasts (Z), and orientation contrasts (). These are
combined to form input S to the saliency map (SM). The most salient
location is the orange telephone box, which appeared very strongly
in C; it becomes the first attended location (92 ms simulated time).
After the inhibition-of-return feedback inhibits this location in the
saliency map, the next most salient locations are successively selected.

free-viewing. It was hence interesting to investigate whether our
model would reproduce the findings of Reinagel and Zador.
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Fig. 4. Examples of color images (a), the corresponding saliency map
inputs (b), spatial frequency content (SFC) maps (c), locations at
which input to the saliency map was higher than 98% of its maximum
(d; yellow circles), and image patches for which the SFC was higher
than 98% of its maximum (d; red squares). The saliency maps are
very robust to noise, while SFC is not.

We constructed a simple measure of spatial frequency con-
tent (SFC): At a given image location, a 16 x 16 image patch is
extracted from each 1(2), R(2),G(2), B(2) and Y (2) map, and
2D Fast Fourier Transforms (FFTs) are applied to the patches.
For each patch, a threshold is applied to compute the number
of non-negligible FFT coefficients; the threshold corresponds to
the FFT amplitude of a just perceivable grating (1% contrast).
The SFC measure is the average of the numbers of non-negligible
coefficients in the five corresponding patches. The size and scale
of the patches were chosen such that the SFC measure is sensi-
tive to approximately the same frequency and resolution ranges
as our model; also, our SFC measure is computed in the RGB
channels as well as in intensity, like the model. Using this mea-
sure, an SFC map is created at scale 4 for comparison with the
saliency map (Fig. 4).

III. RESULTS AND DISCUSSION

Although the concept of a saliency map has been widely used
in focus-of-attention models [1], [3], [7], little detail is usually
provided about its construction and dynamics. Here we examine
how the feedforward feature extraction stages, the map combi-
nation strategy, and the temporal properties of the saliency map
all contribute to the overall system performance.

A. General performance

The model was extensively tested with artificial images to
ensure proper functioning. For example, several objects of same
shape but varying contrast with the background were attended
to in order of decreasing contrast. The model proved very robust
to the addition of noise to such images (Fig. 5), particularly
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Fig. 5. Influence of noise on detection performance, illustrated with a

768 X 512 scene in which a target (two people) is salient by its unique
color contrast. The mean £ S.E. of false detections before target
found is shown as a function of noise density for 50 instantiations of
the noise. The system is very robust to noise which does not directly
interfere with the main feature of the target (left; intensity noise and
color target). When the noise has similar properties to the target, it
impairs the target’s saliency and the system first attends to objects
salient for other features (here, coarse-scale variations of intensity).

if the properties of the noise (e.g., its color) were not directly
conflicting with the main feature of the target.

The model was able to reproduce human performance for a
number of pop-out tasks [7], using images of the type shown
in Fig. 2. When a target differed from an array of surround-
ing distractors by its unique orientation (like in Fig. 2), color,
intensity or size, it was always the first attended location, ir-
respectively of the number of distractors. Contrarily, when the
target differed from the distractors only by a conjunction of fea-
tures (e.g., it was the only red-horizontal bar in a mixed array
of red-vertical and green-horizontal bars), the search time nec-
essary to find the target increased linearly with the number of
distractors. Both results have been widely observed in humans
[7], and are discussed in Section III-B.

We also tested the model with real images, ranging from nat-
ural outdoor scenes to artistic paintings, and using N (.) to nor-
malize the feature maps (Fig. 3 and ref. [17]). With many such
images, it is difficult to objectively evaluate the model, because
no objective reference is available for comparison, and observers
may disagree on which locations are the most salient. However,
in all images studied, most attended locations were objects of
interest, such as faces, flags, persons, buildings or vehicles.

Model predictions were compared to the measure of local
SFC, in an experiment similar to that of Reinagel and Zador
[18], using natural scenes with salient traffic signs (90 images),
red soda can (104 images), or vehicle’s emergency triangle (64
images). Similar to Reinagel and Zador’s findings, the SFC
at attended locations was significantly higher than the average
SFC, by a factor decreasing from 2.5+0.05 at the first attended
location to 1.6 £ 0.05 at the 8th attended location. Although



this result does not necessarily indicate similarity between hu-
man eye fixations and the model’s attentional trajectories, it
indicates that the model, like humans, is attracted to “infor-
mative” image locations, according to the common assumption
that regions with richer spectral content are more informative.
The SFC map was similar to the saliency map for most images
(e.g., Fig. 4.1). However, both maps differed substantially for
images with strong, extended variations of illumination or color
(e.g., due to speckle noise): While such areas exhibited uni-
formly high SFC, they had low saliency because of their uni-
formity (Figs. 4.2, 4.3). In such images, the saliency map
was usually in better agreement with our subjective perception
of saliency. Quantitatively, for the 258 images studied here, the
SFC at attended locations was significantly lower than the max-
imum SFC, by a factor decreasing from 0.90 & 0.02 at the first
attended location to 0.55 £ 0.05 at the 8th attended location:
While the model was attending to locations with high SFC,
these were not necessarily the locations with highest SFC. It
consequently seems that saliency is more than just a measure of
local SFC. The model, which implements within-feature spatial
competition captured subjective saliency better than the purely
local SFC measure.

B. Strengths and limitations

We have proposed a model whose architecture and compo-
nents mimic the properties of primate early vision. Despite its
simple architecture and feedforward feature extraction mecha-
nisms, the model is capable of strong performance with com-
plex natural scenes. For example, it quickly detected salient
traffic signs of varied shapes (round, triangular, square, rectan-
gular), colors (red, blue, white, orange, black) and textures (let-
ter markings, arrows, stripes, circles), although it had not been
designed for this purpose. Such strong performance reinforces
the idea that a unique saliency map, receiving input from early
visual processes, could effectively guide bottom-up attention in
primates [4], [10], [5], [8]. From a computational viewpoint,
the major strength of this approach lies in the massively paral-
lel implementation, not only of the computationally expensive
early feature extraction stages, but also of the attention focus-
ing system. More than previous models based extensively on
relaxation techniques [5], our architecture could easily allow for
real-time operation on dedicated hardware.

The type of performance which can be expected from this
model critically depends on one factor: Only object features
explicitely represented in at least one of the feature maps can
lead to pop-out, that is, rapid detection independently of the
number of distracting objects [7]. Without modifying the preat-
tentive feature extraction stages, our model cannot detect con-
junctions of features. While our system immediately detects a
target which differs from surrounding distractors by its unique
size, intensity, color or orientation (properties which we have
implemented because they have been very well characterized in
primary visual cortex), it will fail at detecting targets salient for
unimplemented feature types (e.g., T junctions or line termina-
tors, for which the existence of specific neural detectors remains
controversial). For simplicity, we also have not implemented any
recurrent mechanism within the feature maps, and hence can-
not reproduce phenomena like contour completion and closure,
important for certain types of human pop-out [19]. In addition,
at present our model does not include any magnocellular motion
channel, known to play a strong role in human saliency [5].

A critical model component is the normalization N(.), which
provided a general mechanism for computing saliency in any
situation. The resulting saliency measure implemented by the

model, although often related to local SFC, was closer to human
saliency because it implemented spatial competition between
salient locations. Our feed-forward implementation of N (.) is
faster and simpler than previously proposed iterative schemes
[5]. Neuronally, spatial competition effects similar to A/(.) have
been observed in the non-classical receptive field of cells in stri-
ate and extrastriate cortex [15].

In conclusion, we have presented a conceptually simple com-
putational model for saliency-driven focal visual attention. The
biological insight guiding its architecture proved efficient in re-
producing some of the performances of primate visual systems.
The efficiency of this approach for target detection critically
depends on the features types implemented. The framework
presented here can consequently be easily tailored to arbitrary
tasks through the implementation of dedicated feature maps.
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