
Hough Transform

• It is a technique used to isolate curves of a given shape 
in an image

• In its classical formulation it requires the curve to be 
specified in some parametric form (usually lines, circles 
or ellipses)
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or ellipses)
• also… it can be generalized to arbitrary curved shapes
• Advantage: robust to “gaps” in the object
• Disadvantages: 

– parametric description of the shape
– depending on the number of parameters might become slow



Hough Transform for lines
• We want to detect points lying on a straight line
• Start with the equation of a straight line in parametric 
form:

ryx =+ ϕϕ sincos

where r is the length of a 
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where r is the length of a 
normal to the line from 
the origin and ϕ is its 
angle with the x-axis
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In case you don’t trust the equation…
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• Given a point xi yi on this line we have:

ryx ii =+ ϕϕ sincos

where r and ϕ are constant

• Consider now r and ϕ variable (ri,ϕi) and xi yi constant (x,y), the 
equation describes all possible lines passing through the point, these 
lines are described by:

[ ]πϕϕϕ 2,0        sincos ∈+= iii yxr
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• The Hough Transform of the point is the plot of this equation on the 
(ri,ϕi) space (Hough Space)

we get a sinusoidal curve



Hough Transform of one point
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• Define the Hough Space: range for r (example: 0-255) 
and the angular resolution of the sampling of ϕ
(example: 6 degrees)

• This gives a Hough Space (HS) of 256x60 points
• Each point in the image “vote” for a set of lines passing 

through it; all these votes are accumulated in the HS
• For each (x,y) increment all accumulator cells (r,ϕ) which 

satisfy the equation:

Hough Transform
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satisfy the equation:

• At the end we scan the accumulator searching for cells 
which have high count: they correspond to lines for 
which there are many points in the image plane

ϕϕ sincos yxr +=



Example: start with one point (pixel)

p1
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Example: add another pixel

p1
p2
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Example: now we have three pixels

p1
p2

p3
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Example: the last one…

p1
p2

p3 p4
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Finally: search intersections in the HT

p1
p2

p3 p4
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p1,p2 and p3 intersect at the orientation of 45°

p3 and p4 intersects at 90°, p4 intersects the othe r points 
around 60°



Improvements:

• Usually start with the output of an edge detector, 
to reduce the number of points in the image

• Search along directions perpendicular to the 
image gradient
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Hough Example

extract 5 strongest lines
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houghdemo.m from http://homepages.cae.wisc.edu/~ece533/matlab/index.html



Circular Hough Transform

• Detect circles in the image
• Parametric equation of a circle:

radius its  and

 circle  theofcenter   theof scoordinate  theare  where

)()( 222

r

(a,b)

rbyax =−+−

• a,b and r define the parameter space, the accumulator is three-dimensional
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Generalized Hough Transform

• Suppose we don’t have a simple analytical equation for the object
• Instead we use a LUT defining the relationship between the 

coordinates of the point, its orientation and the Hough parameters

(xref,yref )
Ωiri βi
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Build the LUT:
1. Select an arbitrary reference point (xref,yref )
2. For all points of the boundary (xi,yi)

• draw a line from (xi,yi) to (xref, yref)
• Measure (βi,ri)
• Compute the orientation of the boundary Ωi

• Add (βi,ri) to a table indexed by Ωi

(xi,yi )

βi
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(xref,yref )

(x1,y1 )

Ωir1 β1

(x ,y )

rj Ωi

βj

Ω0 …

• Probably there will be more than one occurrence of a particular 
orientation…

SINA 08/09





+=
+=

iiiref

iiiref

ryy

rxx

β
β

sin

cos

(xj,yj )
Ω0 …

Ω1 …

… …

Ωi (r1,β1), (r2,β2) … 

… …

R-table



• Once we have the R-table for the object, we can perform the Hough 
Transform of the image

• For each point in the image (xi,yi), we compute the point (xref,yref) 
from:
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• where (ri,βi) are derived from the R-table, starting from the orientation 
of the point Ωi
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i

• We accumulate the Hough Space in (xref,yref):

( ) ++refref yxA ,

• Finally search for local maxima in A  to identify the center(s) of the 
object(s)



• It is easy to extend the search for different 
object orientations φ and scales S:
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• In this case we explore and accumulate a 
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• In this case we explore and accumulate a 
four-dimensional space:

( ) ++SyxA refref ,,, ϕ



Measures of similarity

• Another approach to detect some previously defined object within a 
given image is to perform template matching

• A template is a sub-image representing the “ideal”pattern that is 
sought in the image

• Involves the translation of the template to every possible position of 
the image, and the evaluation of a the level of match between the 
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the image, and the evaluation of a the level of match between the 
template and the image in that position

• Global versus local template

template
image



• For each position of the template in the image we evaluate a 
similarity measure between the template and the image

• Possible measures are summation difference or cross-correlation
• These measures are not only used for template matching but also to 

estimate the level of similarity between two signals

1. Euclidean distance

• Estimate the similarity between g and t in m,n:
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[ ]2
( , ) ( , ) ( , )

i j

E m n g i j t i m j n= − − −∑∑

The sum is computed for all points for which (i-m,j-n) is a valid 
coordinate of t, in other words for all points in the template image

• To find the best match we look for the smallest value in E(m,n)



• From an intuitive point of view we are computing the distance 
between two HxW dimensional points, where H,W is the size of the 
template

• Since we are not interested in the exact value of the distance (we 
search for the minimum in E) we can avoid computing the square 
root (Sum of Squared Differences):

[ ]22( , ) ( , ) ( , ) ( , )
i j

SSD m n E m n g i j t i m j n= = − − −∑∑
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• Or: 

( , ) ( , ) ( , )
i j

S m n g i j t i m j n= − − −∑∑



2 2 2( , ) ( , ) ( , ) 2 ( , ) ( , )
i j

E m n g i j t i m j n g i j t i m j n = + − − − − − ∑∑

this is constantassume this constant

[ ]( , ) ( , ) ( , )
i j

R m n g i j t i m j n= − −∑∑

2. Cross-correlation
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i j

t and g are similar when R(i,j) is large

Problems with cross-correlation:
-False matches if the image energy varies with the 
position
-Values of R depends on the size of the template
-Not invariant to illumination change

2( , )g i j∑∑



Consider the correlation with a constant pattern, of 
gray value v

a b c

d e f

v v v

v v v
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g h i v v v

R=v*(a+b+c+…+i)



Now consider the correlation with a constant 
image twice as bright

a b c

d e f

2v 2v 2v

2v 2v 2v
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g h i 2v 2v 2v

R=2*v*(a+b+c+…+i)>v*(a+b+c+…i)
We get higher correlation, with the same template…



The normalized cross-correlation is defined as:

• Solution: normalize the intensity
– subtract the mean of both signals
– divide by std. deviation

�
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The normalized cross-correlation is defined as:



Problems with template matching
• The template represents the object as we expect to find 

it in the image
• The object can indeed be scaled or rotated
• This technique requires a separate template for each 

scale and orientation
• Template matching become thus too expensive, 

especially for large templates
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especially for large templates



• A possible solution is to reduce the size of the templates, 
and detect salient features in the image that characterize 
the object we are interested in

• Extract a set of local features that are invariant to 
translation, rotation and scale…

• Perform matching only on these local features
• We then analyze the spatial relationships between those 

Local template matching
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• We then analyze the spatial relationships between those 
features

See for example: 
Corner detector (Harris and Stephens,1988) 
SIFT (Lowe, 1999) 



Example:
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Application:
How do we build a panorama?

• We need to match (align) images
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Matching with Features
• Detect feature points in both images

• Find corresponding pairs
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Matching with Features
• Detect feature points in both images

• Find corresponding pairs

• Use these pairs to align images
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• Image pyramid is a collection of representations of 
an image

• Typically each layer of the pyramid is half the 
width and half the height of the previous layer

Gaussian Pyramid
(Burt and Adelson 1983)
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• If we stack the layers on top of each other, we get 
a pyramid
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• In a Gaussian pyramid, each layer is 
smoothed by a symmetric Gaussian 
kernel, and resampled to get the next layer

• The smallest image is the most heavily 

SINA 08/09

• The smallest image is the most heavily 
smoothed 



SINA 08/09



SINA 08/09
•SINA – 06/07

from: David Forsythhttp://www.cs.berkeley.edu/~daf/



Applications (1)

• Search over scale – objects can be 
represented as small image patterns; if we 
want to search across different scales we 
can search across the layers of the 
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can search across the layers of the 
gaussian pyramid; bigger objects will be 
found in the coarser scale layers, smaller 
objects will be found in the finer scales



Applications (2)

• Spatial search: often we have a point in 
one image and want to find the same point 
in another image (example: stereo vision). 
This can be achieved more efficiently if we 
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This can be achieved more efficiently if we 
first start to search the object in the 
coarser layers, and then refine the match 
by searching in the finer layers (coarse-to-
fine matching)



Applications (3)

• Feature tracking: features (e.g. edges) found at 
coarse levels are associated with high-contrast 
image events (low contrast patches are easily 
lost during consequent smoothing); at fine 
scales there are probably many more features 
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scales there are probably many more features 
with lower contrast. A common strategy for 
improving a set of features obtained at a fine 
scale is to track features to coarser scales and 
accept only the fine scale features that are 
identifiable at coarser scales (feature tracking)



• Suppose we want to analyze the spatial frequency 
content of an image

• Fourier transform is a way to do this, the problem with 
this approach is that Fourier coefficients depend on the 
entire image

• In this way we loose spatial information

Gabor filters
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• In this way we loose spatial information
• Gabor filters allow to do this; they have stronger response 

at points in an image where there are components that 
locally have a particular spatial frequency and orientation



• Gabor filters have impulse response defined by a 
harmonic function multiplied by a Gaussian function

• Also used as models of the receptive fields of simple 
cells
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σ – width of the Gaussian
γ – shape of the 
Gaussian
θ – orientation
λ – wavelength
ψ – phase
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Visual attention
• Only a small fraction of the information registered by the 

visual system at any given time reaches levels of 
processing that directly influence behavior

• Visual attention controls access to this privileged level 
and ensures that the selected information is relevant to 
behavioral priorities and objectives
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• A spotlight that enhances 
important information

• Can diverge from the 
direction of the gaze



Bottom-Up & Top-Down cues
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• Visual attention model, inspired by the behavior and 
neuronal architecture of the early primate visual system
• “Feature integration theory” to explain human visual 
search strategies

• Visual input is decomposed in a set of feature maps

Example: Itti’s model (1998)
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• Different spatial locations compete for saliency within 
each map
• All maps converge into a “master saliency map” which 
codes local saliency over the entire visual scene
• This map has internal dynamics  which generate 
attentional shifts



1. Create nine spatial scales using Gaussian pyramids (low-pass 
and subsample), scales from 0 to 8 (1:1… 1:256)

2. Features are computed by a set of linear “center-surround” 
operations, implemented as the difference between fine and 
coarser scales:
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this produces multi-scale feature extraction, including different ratios 
between the center and surround regions (in the paper 6 different ratios 
are used)



• Compute:
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brgGbgrR

bgrI

−−−+=+−=
+−=+−=

++=

2/2/)(;2/)(

2/)(;2/)(

3/)(

• And center-surround differences at different scales (s,c):
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( ) ( ))()()()(),( sBsYcYcBscBY −−−=

• Local orientation information is obtained from I using 
Gabor filters at different scale and orientation (0, 45, 90, 
135) :

( ) ),(),(,, θθθ sOcOscO −=



• Difference are taken between fine and coarse scales, if 
the center is a pixel at scale c, the surround is the 
corresponding pixel at scale s=c+δ, where:

{ }
{ }
2,3,4

3,4

six combinations

c

δ
∈

∈
⇒
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• Total of 42 maps: 6 for intensity, 12 for color and 24 for 
orientation 



Saliency maps: example
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N() operator, promote maps in which a small number of strong peaks 
of activity is present, suppress maps with a large number of 
comparable responses:
-normalize the map to a fixed range [0..M]
-compute the average of m of all other local maxima
-multiply the map by (M-m)2, boost maps with small number of strong 
peaks
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Example 2 (Orabona et al. 2005)

Saliency Map

R+G- G+R- B+Y-

+
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Input image

R+G- G+R- B+Y-

Edges

Color quantization


