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Key properties of local features
• Locality, robust against occlusions
• Must be highly distinctive, a good feature should allow 

for correct object identification with low probability of 
mismatch

• Easy to extract and match, efficiency
• Quantity: many features from small objects
• Invariance to:

– noise
– changes in illumination
– scaling
– rotation
– viewing direction (to a certain extent)
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Scale Invariant Feature Transform 
(SIFT)

• Well engineered local features, designed to address 
these requirements

• Proposed by David Lowe “Distinctive Image Features 
from Scale Invariant Features”, International Journal of 
Computer Vision, Vol. 60, No. 2, 2004, pp. 91-110

Slides adapted from D.Lowe and Cordelia Schmid, Recognition and 
Matching based on local invariant features, CVPR 2003.
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Steps

• Scale-space extrema detection
• Keypoint localization
• Orientation assignment
• Generation descriptors
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Finding Keypoints – scale matters…
(an intuitive and informal explanation)
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Finding keypoints
• Detect points in which the Laplacian (of Gaussian) of the 

image is large (Lindeberg 1994)
• This has been experimentally shown to be a stable 

image feature compared to gradients, Hessian or Harris 
corner detection functions

• To achieve invariance to scale, use the normalized LoG:
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• Build a scale space, each octave is a collection of 
images smoothed in sequence:

2
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• When we reach a new octave (sigma doubles), 
downsample and start a new octave

• If each octave is made of s intervals:
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• Adjacent image scales are subtracted to produce the 
difference-of-Gaussian images
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• Recall that the Laplacian of Gaussian can be 
approximated as a difference of two Gaussians 

• Efficient, smoothed images L can be computed efficiently
• D is then computed as simple image subtraction
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Graphically…

Convolve with
Gaussian

Downsample
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Local extrema detection

• Find local extrema (max 
or min) of DoG

• Compare each point with 
its eight neighbors at the 
same scale and nine 
neighbors at two nearby 
scales

$ ( , , )x y σ=x
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Improve reliability

• For each candidate keypoint
• Discard low contrast keypoints
• Discard edges, difference-of-Gaussian has 

strong response to edges, unfortunately edges 
are unstable (due to translation or noise)
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$( )  low contrast pointD x t< ⇒

• Check principle curvature of D(), edges will have large 
principal curvature across edge but small one in the 
perpendicular direction
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• the eigenvalues of H are proportional to the principle 
curvatures of D, as for the Harris corner detector we can 
avoid computing the eigenvalues

estimating using differences
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Orientation assignment
For the selected keypoint, at the closest scale:
• compute a gradient orientation histogram
• determine dominant orientation � assign this 

orientation to the keypoint
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Orientation assignment: technicalities

• Histogram size is 36 bins
• Use magnitude of gradient as weight in the histogram, 

multiplied by Gaussian weights
• Given scale s, use Gaussian with sigma=1.5*s
• Detect highest peak and any other local peak within 80% 

of the highest peak � these local peaks generate extra 
keypoints (experimentally this happens 15% of the 
times)

• Fit a parabola to 3 points in the histograms closest to the 
match, and re-detect maximum for better accuracy
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Descriptor
• Thresholded image gradients are sampled over 16x16 array of 

locations in scale space
• Create array of orientation histograms
• To achieve orientation invariance, orientations are rotated relative to 

the keypoint orientation (prev. slide)
• 8 orientations x 4x4 histogram array = 128 dimensions
• Below: schematic representation  (in this case of a 2x2 descriptor 

from a 8x8 array of locations)



SINA 10/11

• Orientations are weighted with Gaussian sigma=scale/2
• Brightness change will not affect gradients, since they 

are computed from pixel differences
• A change in image contrast, in which all pixels of an 

image are multiplied by a constant, will multiply gradients 
of the same amount
– To reduce the effect of illumination change, keypoint descriptors 

are normalized to unit length

• To reduce artifacts due to saturation: remove large 
gradients after first normalization (>0.2), and re-
normalize the result
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Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures
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Keypoint matching
• The best match for each keypoint is found as the nearest neighbor 

in a database of SIFT features from training images
• Use Euclidian distance between descriptors
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• How do we discard features that do not have a good match? Pick a 
global threshold?

• Lowe suggests using ratio of nearest neighbor to ratio of second 
nearest neighbor

• This measures performs well: correct matches need to have closest 
match significantly closer than the closest incorrect match

• False match: there is likely to be a number of other false matches 
within similar distances due to the high dimensionality of the feature 
space
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• Matching:
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Curiosity: real implementation

• To avoid exhaustive search Lowe proposes an 
approximate algorithm called Best-Bin-First, 
which returns the closest neighbor with high 
probability

• Priority search, with cut-off after checking 200 
first candidates

• For a database of 100K keypoints speed up of 2 
orders of magnitude, with less than 5% of 
correct match loss
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Conclusions

• SIFT features are reasonably invariant to 
rotation, scaling, and illumination changes

• We can use them for matching and object 
recognition among other things

• Robust to occlusion, as long as we can see at 
least 3 features from the object we can compute 
the location and pose

• Efficient on-line matching, recognition can be
performed in close-to-real time (at least for small 
object databases)
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Empirical evaluation of the parameters

details in Lowe 2004 IJCV

• In the paper most parameters are determined empirically
• 32 real images, outdoor scenes, human faces, aerial photographs, 
industrial images
• Range of “synthetic” transformation, rotation, scaling, affine stretch, 
change in brightness, contrast, noise
• Because transformations were synthetic, it was possible to know 
where each feature will be in the transformed image and compare the 
result of the match
• Check repeatability: 

– # of keypoints that are detected after the transformation, in the 
correct location and scale
– # of keypoints that are successfully matched using the nearest 
descriptor  technique
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1) Frequency of sampling in scale

…best value appears to be 3 scales per octave
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2) Smoothing for each octave (sigma)

1.6   (compromise bw performance and efficiency)σ =
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• Size of the descriptor:
– r number of orientations in the histograms
– n the width of the nxn array of orientation 

histograms
– this gives a rxnxn descriptor vector

• Examples:
– 8x2x2=32 …
– 8x4x4=128, 
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3) Size of the descriptor

8 orientations 4x4 � 128 dimensions

r
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0.8 is a threshold that eliminates 90% of false matches at 
the cost of discarding only 5% of good matches

4) Threshold
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Results
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Location recognition
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3D Object Recognition
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3D Object Recognition
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Recognition under occlusion
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Improvements…
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Key point localization
• Refine maxima and minima 

detection
• Fit a quadratic to surrounding 

values for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 
2002)

• Taylor expansion around point: B lur 
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• Offset of extremum (use finite 
differences for derivatives):
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D and its derivatives are 
evaluated around the same 
point, x here is the offset
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Speeded-Up Robust Features (SURF)

• H.Bay, A.Ess, T.Tuytelaars, L. Van Gool, Computer 
Vision and Image Understanding (CVIU), Vol. 110, No. 
3, pp. 346--359, 2008

• Similar to SIFT but faster and more robust (according to 
the paper)

• Available in OpenCV
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SURF Keypoints

• Compute:
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• Idea: gaussians are in practice discretized and cropped
• Compute an approximation of H using box filters
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• Box filters can be computed efficiently using the integral 
image (next)

• Computing these filters is fast irrespectively of the size, 
no need to perform pyramid decomposition and 
downsampling
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• Instead of down-sampling the 
image, up-scale the filters
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Descriptor
• Similar to SIFT, describe distribution of intensities
• Compute orientations using squared filters (called Haar 

wavelets)
• The dimension of the descriptor is 64, to speed up 

matching
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• From scale s of the keypoint
• Firstly compute descriptor principle orientation, compute response to 

Haar wavelets in neighborood of 6s points (size of filters 4s points)
• Weight responses using a Gaussian sigma=2s
• The response each filter dx,dy is represented in a x,y plane 

slide a window of size pi/3
compute the sum of dx and dy within 
the windows
take the maximum
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Descriptor

Size of the 
decriptor is 
4x4x4=64
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Integral Image

• The integral image representation allows 
for fast computation of rectangular two-
dimensional image features

• Originally proposed by Viola & Jones 
(2001) for face detection

• Used in the SURF algorithm to compute 
box filters at different scales
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Examples of features
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Integral Image
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• The integral image at location x,y contains the sum of all 
pixels above and left of x,y:

• Computed once, from a single pass:
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The sum of the pixels within rectangle D can be computed with four 
array references:
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